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Abstract

Let G be the identity component of the isometry group for an arbitrary
curved two-point homogeneous space M. We consider algebras of G-invariant
differential operators on bundles of unit spheres over M. The generators of this
algebra and the corresponding relations for them are found. The connection of
these generators with the two-body problem on two-point homogeneous spaces
is discussed.
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Mathematics Subject Classification: 16S32, 43A85, 22F30, 70F05

1. Introduction

The property of a differential operator on a smooth manifold M to be invariant with respect to
an action of some group G (especially a Lie group) on M plays a great role in mathematical
physics since it helps select physically significant operators. The algebra Diff(M) of all
G-invariant differential operators with complex or real coefficients on M gives the material
for constructing G-invariant physical theories on M. Properties of such a theory are in close
connection with properties of the algebra Diff (M).

A homogeneous smooth manifold M of the Lie group G is called commutative space, it
the algebra Diff (M) is commutative. The well-known example of a commutative space is the
symmetric space of rank /. Recall that the rank of a symmetric space is the dimension of its
maximal flat completely geodesic submanifold. The commutative algebra Diff(M) for this
space is generated by / independent commutative generators [1]. Particularly, for symmetric
spaces of rank 1 (which are the same as two-point homogeneous spaces) the algebra Diff (M)
is generated by the Laplace—Beltrami operator. Also, the class of commutative spaces contains
weakly symmetric spaces [2].

Only some sporadic examples of noncommutative algebras Diff (M) are known (see, for
example, ch 2 [3]). One of these examples is the noncommutative algebra Diff(M;) for
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M, = Op(1,n)/SO(n — 1) studied in [4], where Oy (1, n) is the identity component for the
group O(1, n). In that paper the space M| was interpreted as the total space for the bundles
of unit spheres over the hyperbolic space H" (R). Denote the total space of the bundle of unit
spheres over a Riemannian space M by Ms.

The space H" (R) is a representative of the class of two-point homogeneous Riemannian
spaces (TPHRS) for which any pair of points that can be transformed by means of appropriate
isometry to any other pair of points with the same distance between them. Equivalently,
these spaces are characterized by the property that the natural action of the isometry group on
the bundle of unit spheres over them is transitive. Thus the natural problem arises: describe
the algebras Diff (Ms) for the bundle of unit spheres over all TPHRS M.

From the point of view of the two-body problem in classical and quantum mechanics,
TPHRS are characterized by the property that the distance between particles is the only
invariant of the isometry group G in the configuration space. The space Mg is isomorphic to
an orbit in general position for the symmetry group G of the two-body problem on the TPHRS
M acting in the configuration space of this problem. Due to the two-point homogeneity of M
the codimension of these orbits is one. Thus, for the two-body problem in TPHRS there is the
degree of freedom corresponding to the distance between particles; other degrees of freedom
correspond to the homogeneous manifold and can be described in terms of the symmetry
group G.

In [5] the polynomial expression for the Hamiltonian H of the quantum mechanical two-
body problem on an arbitrary TPHRS M was found through the radial differential operator
and elements of Diff(Ms). In the present paper the generators of algebras Diff (Ms) and the
corresponding relations for them are found for all curved two-point homogeneous spaces M.
Some properties of these generators are discussed.

This paper is organized as follows. In section 2, we give the necessary information on
invariant differential operators on homogeneous spaces. We recall the classification of TPHRS
in section 3. In section 4, we specify the construction of invariant differential operators for
the space Mg, where M is a two-point homogeneous Riemannian space. Some generators are
found common for all Diff(Ms). In section 5, the model of the quaternion projective space
P"(H) is described. In section 6, the generators for the algebra Diff (P" (H)g) are calculated
and by formal correspondence the analogous generators of the algebra Diff(H" (H)s) are
obtained. The corresponding relations for these algebras are found in section 7. In section 8
we consider from the same point of view algebras Diff(P"(C)g), Diff(H"(C)s) and in
section 9 the algebras Diff(P"(R)s), Diff (Sg). In section 10, there is a description of
the Cayley plane P?>(Ca) through the exceptional Jordan algebra h3(Ca). In section 11,
the generators for the algebra Diff (P2(Ca)sg) are calculated and by formal correspondence the
analogous generators of the algebra Diff (H?>(Ca)s) are obtained. The corresponding relations
for these algebras are found in section 12.

The connection of constructed generators with the two-body problem on two-point
homogeneous spaces is discussed in section 13.

In appendix A we describe the technique for calculating the commutative relations for
algebras of differential operators under consideration and in appendix B one interesting fact
for an arbitrary TPHRS is proved.

2. Invariant differential operators on homogeneous spaces

Let G be a Lie group, M be a Riemannian G-homogeneous left space, xo € M, K C G be the
stationary subgroup of the point xo € M and € C g = 7, G be the corresponding Lie algebras.
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Choose a subspace p C g such that g = p @ £ (a direct sum of linear spaces). The space p can
be identified with the tangent space T, M.

The stationary subgroup K is compact, since it is also the subgroup of the group SO(n).
By averaging on the group K we can define a Adg-invariant scalar product (-, -) on g and
choose the subspace p orthogonal to € with respect to this product [3, 6]. In this case we have
the inclusion Adg (p) C p, i.e. the space M is reductive.

Identify the space M with the factor space of left conjugate classes of the group G with
respect to the subgroup K. Let 7 : G — G/K be the natural projection.

Let S(V) be a graded symmetric algebra over a finite-dimensional complex space V, i.e.
a free commutative algebra over the field C, generated by elements of any basis of V. The
adjoint action of the group G on g can be naturally extended to the action of G on the algebra
S(g) according to the formula:

Adg: Y- . Y= Ad (V) - ...- Ad,(Y), Y1, ..., Y € g.

Denote by gX the set of all Ad-invariants in S(g).

The main result of the invariant differential operators theory is the existence of the one to
one correspondence between the algebra Diff (M) and the set pX of all Adg-invariants in S(p)
[3]. For our purpose the next version [2] of this result is more convenient. Let U(g) be the
universal enveloping algebra with the standard filtration for the Lie algebra g and U (g)* be
its subalgebra, consisting of all Adg-invariant elements in U (g). Let  be the linear mapping
of S(p) into U (g), according to the formula

1
,bL(Yl -...-Yp): —' Z Yg(1)~...-Yg(p)
p: 0e®,
where on the left-hand side the element Y; - ... - Y, is supposed to be in S(p) and on the

right-hand side it is supposed to be in U (g). Here &, is the permutation group of p elements.
Obviously, u is injective.

Let U(g)t be the left ideal in U (g) generated by £ and (U (g)€)* be the set of all Adg-
invariant elements in U(g)€. The set (U(g)®)X is a two-sided ideal in U(g)X since for
elements f € £and g € U(g)® we have fg = adsg + gf = gf. Also u(p*) C U(g)¥,
because M is reductive. Hence we can define the factor algebra U(g)X /(U (g)®)X. Let
n:U@X — U(@X/(U(g))X be the canonical projection.

Theorem 1 ([2]). The algebras Diff (M) and U (g)X /(U (9)£)X are isomorphic.

Every element of U (g)X /(U (g))X has the unique representative from pX or equivalently
from w(pX). We can get the relations in Diff(M) operating in U (g)X modulo (U (g)&)X.
This approach leads to simpler calculations than the operations through local coordinates on
M (like in [4]) that gives quite cumbersome calculations even in the relatively simple case of
M = H"'(R)s.

Below we are interested in the representation of the associative algebra Diff (M) by its
generators and corresponding relations. Let {g;} be a set of generators of the commutative
subalgebra pX C S(p). Not losing generality we can suppose that all g; are homogeneous
elements w.r.t. the grading of S(p). Then the elements n o 11(g;) generate the algebra Diff (M).

Relations for the elements n o u(g;) are of two types. The first type consists of
relations induced by relations in U(g). Due to the universality of U(g) all these relations
are commutative ones, induced by the Lie operation in g. They are reduced to commutative
relations of the simplest form: [D;, D,] = D, where the operators Dy, D, € Diff(M) have
degrees m; and m, respectively and the degree of D € Diff(M) is less than or equal to
miy+my — 1.
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Suppose now that there is a relation in U (g) of the form

P(mou(g),....noung) =0
or equivalently

P(u(g1), ..., u(g) =D (1)

where P is a polynomial and D e (U(g)¥)X. Using the commutative relations for
n(gi),i =1, ..., kwecanreduce the polynomial P to the polynomial P;, symmetric w.r.t. all
permutations of its arguments, and equation (1) becomes

Pi(u(g1), ..., n(gy)) = D* (2)

D* € (U(g)®)X. After this reduction relation (2) may be trivial: P, = 0, D* = 0. It means
that (1) is the commutative relation. Suppose that relation (2) is nontrivial. Consider the sum
P> (11, ..., ) of monomials with the highest total degree from polynomial P;(ty, ..., t;) with
commutative variables 1, ..., fy. Due to the symmetry of P; the polynomial P(¢, ..., t)
is nontrivial. On the other hand from (2) we obtain that P>(gy, ..., g) = 0 due to the
expansion g = p @ €. Thus every relation in the algebra U (g)X /(U (g)€)X w.r.t. its generators
nowu(g),-..,no u(gr) modulo commutative relations is in one to one correspondence with
the relations for homogeneous generators g1, . .., g of the commutative algebra pX. We call
such relations the relations of the second type.

The filtration of the algebra U (g) induces the filtration of the algebra Diff(M) which
coincides with the natural filtration of Diff (M) as the algebra of differential operators.

For simplicity throughout the whole paper we consider invariance of differential operators
only w.r.t. the identity component of a whole isometry group.

3. Two-point homogeneous Riemannian spaces

The classification of two-point homogeneous Riemannian spaces can be found in [7, 8] (see
also [9-11]), and is as follows:

1. the Euclidean space E";
. the sphere S";
. the real projective space P"(R);
. the complex projective space P (C);
. the quaternion projective space P" (H);
. the Cayley projective plane P?(Ca);
. the real hyperbolic space (Lobachevski space) H" (R);
. the complex hyperbolic space H" (C);
9. the quaternion hyperbolic space H" (H);
10. the Cayley hyperbolic plane H>(Ca).

0NNk

The isometry groups for all these spaces except Cayley planes are classical and for the Cayley
planes they are two real forms of the complex special simple group Fi.

For the Lie algebra g of the isometry group of the compact two-point homogeneous
space M there is the following general expansion [5, 12, 13], which is the specification of the
expansion g = p @ ¢ from section 2.

Proposition 1. The algebra g admits the following expansion into the direct sum of subspaces:
g=a®t Dt Dty DpyDpn 3)

where dima = 1, X is a nontrivial linear form on the space a, dim¢, = dimp, = g,
dimby; =dimpy, =qo, p = a®p, Dpa, E =L DE D Ery: g1, q2 € {0} UN, the subalgebra
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a is the maximal commutative subalgebra in the subspace p. Here ¢ is a stationary subalgebra,
corresponding to some point xo € M. All summands in (3) are ady,-invariant; in particular
€y is a subalgebra of t.

Identify the space p with the space Ty M. Under this identification the restriction of
the Killing form for the algebra g onto the space p and the scalar product on Ty M are
proportional. In particular, the decomposition g = p @ € is uniquely determined by the point
xo. Let (-, -) be a scalar product on the algebra g such that it is proportional to the Killing
SJorm and its restriction onto the subspace p =T, M coincides with the Riemannian metric g
on T, M. The spaces a, ¥, €, py, €2, P2 are pairwise orthogonal.

Besides, the following inclusions are valid:

[a,pa]l C 8, [a, &1 C ps [a, p2a] C €2 [a, €221 C pos

[a, €] =0 (B, pa]l CpuDa (B, 8] C s @ b @
[pi, P2l C e ® B [, €221 C & (P2, P22l C B [E2.pul Ca

[, En] C & [€, p2i] C pa [P, €221 C ps [P, p2s] C &y
Moreover, for any basis e, ;,i = 1, ..., q; in the space p, and any basis ey ;, i = 1,..., ¢
in the space o, there are the basis f, ;,i = 1,...,q, in the space ¥, and the basis
S i, J=1,...,q2 inthe space ¥y, such that

(A, enil=—1fui [A, fril = e leri, fiil=—2A

(eriver;) = {fir frj) =8 R Lj=1,...,q1 5)
[A, el = —fai [A, faril = exi lex.is fari]l = —A

(exis e ) = (fois frn ) = 8;; R ij=1,....q¢ (A, A) = R?

where the vector A € a satisfies the conditions (A, A) = R?, |AM(A)| = % Here the positive

constant R is connected with the maximal sectional curvature x,, of the space M by the formula
)

Xy = R™7.

Nonnegative integers g; and ¢, are said to be multiplicities of the space M. They
characterize M uniquely up to the exchange S" < P"(R). For the spaces S" and P"(R)
we have g1 = 0,¢» = n — 1; for the space P"(C) : ¢, = 2n — 2, ¢, = 1; for the space
P"(H) : g1 = 4n — 4, g = 3 and for the space P*(Ca) : q1 = 8, g2 = 7. Conversely, for the
spaces S" and P" (R) we could reckon that g; = n — 1, go = 0. Our choice corresponds to the
isometries P! (C) = S?, P! (H) = S*.

Remark 1. Noncompact two-point homogeneous spaces of types 7, 8, 9, 10 are analogous to
the compact two-point homogeneous spaces of types 2, 4, 5, 6, respectively. In particular, it
means that Lie algebras g of symmetry groups of analogous spaces are different real forms of
a simple complex Lie algebra. The transition from one such real form to another can be done
by multiplying the subspace p from the decomposition g = £ @ p by the imaginary unit i (or
by —i).

The information concerning the representation theory of symmetry groups of two-point
homogeneous spaces can be found in [14].

4. Invariant differential operators on Mg

Here we shall specify the construction from section 2 for the space Mg, where M is a two-point
homogeneous compact Riemannian space, using proposition 1.
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Let G be the identity component of the isometry group for M and K be its stationary
subgroup, corresponding to the point xo € M. The group G naturally acts on the space Ms
and this action is transitive [10] (lemma 8.12.1). In particular K acts transitively on the unit
sphere Sy, C T,,M. Identify the space p from proposition 1 with the space T, M. After this
identification the action of K on 7,, M becomes the adjoint action Adg on p. Let K be the
subgroup of K, corresponding to the subalgebra £, C €. Due to relations (4) and (5) Ky is the
stationary subgroup of the group G, corresponding to the point' y := (xo, A’) € Mg, where
A = %A.

Let p := a ® py @ poy D &, @ 8y, Since [By, p] C p the expansion g = p D & is
reductive. One has Ty Ms = T M @ Ta'Sy,. Due to proposition 1 we obtain A’ L(p, @ p2;)
and [f)»,i’ Al = —(2R)*le)\,i, i =1,..., qi, [ka,ja Al = —Rilez)h_j, j=1,..., q>.
Therefore, the space €, @ €, is identified through the K-action on 7,,M with the space
TSy, and the Ky-action on the space TyMs >~ p = a @ p;, ® p2y D £, @ £ is again adjoint.

From proposition 1 we see that Adg, conserves all summands in the last expansion. On
the other hand, the Ky-action on 74'S,, is the differential of Ky-action on (ANt ¢ T M.
Since the last action is linear we obtain that the Adg,-action on p, is equivalent to its action
on £, and the Adg,-action on p,, is equivalent to its action on &,. Let x5 : & — py,
X2 €2, — P2, be isomorphisms of linear spaces such that AdK0| o xa = x5 o Adg, |h and

P

Adkg, |p2)_ O X2). = X24 © AdKo|ézj_~

After the substitution p — p, € — €, we can apply the construction from section 2 for
calculating generators and relations for the algebra Diff (Ms). Let g; be independent invariants
of the Adg,-action on p. Then elements 1 o u(g;) generate the algebra Diff (Ms).

There are some obvious invariants of the Adg,-action on p. First of all itis A € a, since
[€, a] = 0. Secondly, the Adg,-action is isometric w.r.t. the Killing form which is proportional
to the scalar product (-, ), so the Adg,-action conserves the restrictions of (-, -) onto spaces
Pis Pax, B, 2. Thirdly, the Adg,-action conserves functions (x, Xy, Y1), X1 € €,,Y; € p,
and (x2,. X2, Y2), Xo € £, Y5 € pos.

Let us define x; and x»; by

0.X =2[A, X] X et xuY =[A,Y] Y € €. (6)
It is obvious that x; : € +— p, and xo, : €, = po, are bijections. For any k& € K| it holds
that Ad; A = A since [£, a] = 0, therefore from (6) we obtain: Ad; o x3 X = 2[A, Ad X] =
X 0o Adp X, X € & and Ad; o x2,.Y = [A, AdyY] = x25. 0 AdyY, Y € ;. Itis clear that
Xofi=eii=1,...,q1and xo for,j =en j, J=1,...,q.

The bases
{ 1 }QI { 1 q1 1 q2 1 q2
—€n.i _.fk,i} {—ezx,'} {—fzx, }
R i=1 R i=1 R ! j=1 R ! j=1

respectively in spaces p;, €, pos, €2, are orthonormal, so one has the following generators of
Diff (Ms):

q1

q1 1 q1
Dy = n(A) Dy =n <Z ei,i) Dy =n (Z fxz,l) D3 =1 (E Z{ek,is fk,i})
i=1 i=1

i=1
q2

92 92
1
Dy=n Zeﬁw Ds =n Zfzz,\,j D=1 EZ{€2A,j,f2A,j}
j=1 =1

j=1

(7
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where {-, -} means anticommutator. For brevity we shall omit the symbol 1 below. From (5)
one easily obtains

[Do, D1] = —Ds [Do, D2] = Ds [Do. D3] = 3(Dy — D)
[Do, D4] = —2Ds [Do, Ds] = 2Dg [Do, D6] = D4 — Ds.

In order to find the full system of invariants and relations in Diff(Ms) we need more
detailed information about the Adg,-action on  and commutators in g. This information will
be extracted in the following sections from the models of two-point homogeneous compact
Riemannian spaces.

It is easily seen that every automorphism of Lie algebra g, conserving its subalgebra €,
generates an automorphism of Diff (Ms). From relations (4) one obtains that the map o : g —
g,0l¢ = id, 0|, = —id is the automorphism of g. It generates the automorphism of Diff (Ms):
Dy — —Dy, Dy — Dy, Dy — D>, D3 — —D3, Dy — D4, Ds — D5, D¢ — —Dg. We
shall denote it by the same symbol o.

Another obvious automorphism is the one parametric group ¢, of internal automorphisms,
generated by the ad -action. From (5) one obtains

Ca(A) = A Cales,i) = cos(a/2)e;; — sin(a/2) fi.i

Ca(f)\,i) = sin(a/Z)e;\,i +COS(O[/2)f)L,,' i = 1, e ql
Calens,j) = cos(a)ey;, j — sin(a) fa,,;
Ca(f2n,i) = sin(@)ez, ; + cos(a) fay, J=L...,q.

Therefore,
¢a(Do) = Dy to(Dy) = cos’(a/2) Dy +sin*(at/2) D, — sin(e) D3
Lo (Do) = sin®(ee/2) Dy + cos>(a/2) Dy + sin o Ds
ta(D3) = % sin(a)(Dy — D) + cos(a) D3
Lo (Dy) = cos®(a) Dy + sin® (o) Ds — sin(2a) Dg
Lo (Ds) = sin®(a) Dy + cos>(er) Ds + sin(2c) Dg
Ca(Dg) = 5 sin(2a) (D4 — Ds) + cos(2a) Ds.
In particular ¢ (D1) = Da, {7 (D2) = D1, {z(D3) = —D3, 5 (Dy) = D;,i =0,4,5,6.
Proposition 1 implies that the base
iA lexi ifxi iff’zxj lfzxj i=1,...,q1 J=1....q¢
R R™ R R ™ R'™

in the space p is orthonormal, therefore the operator D* = Dg + Dy + Dy + Dy + Ds
corresponds to the Casimir operator in U(g) [17] (lecture 18). It means that D* lies in the
centre of the algebra Diff(Ms).

Let 7y : Ms — M be the canonical projection and 7 is the map of a function f on M
to the function f o on Ms. Due to the identification p =~ T M it is clear that the operator
(Dg + D + Dz) o 71 is the Laplace—Beltrami operator on M.

5. The model for the space P (H)

Let H be the quaternion algebra over the field R with the base 1,1i,j, k, where

ij = —ji = k,jk = —kj = i,ki = —ik = j. The conjugation acts as follows:
x+yi+zj+tk=x—yi—zj—tk x,y,z,t € R.
Let H™*! be the right quaternion space and (zy, . . ., Z,+1) be coordinates on it. Let P"(IH)

be a factor space of the space H™*'\ {0} with respect to the right action of the multiplicative
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group H* = H\{0}. The set (z; : ... : zy41) up to multiplication from the right by an
arbitrary element from the group H* is the set of homogeneous coordinates for the element?
m(z) on the space P"(H), where 7 : H"'\{0} — P"(H) is the canonical projection. Let
X, y) = Y Ty X = (X1, X001), Y = (Vb v vy Yast) € H™! be the standard scalar
product in the space H'*!. Letz € H"*'\{0}, & € T,H™', ¢ = n.& € Trm®P'(H)),i =1,2.
A metric on the space P" (H)

211y &) = (&1, &)z, 2) — (&, 2)(2, &)/ (2, 2)° ®)

is the analogue for the metric with a constant sectional curvature on the space P"(R) and the
metric with a constant holomorphic sectional curvature on the space P*(C). The real part of
the metric (8) is a Riemannian metric on the space P (H):

g =4R*Reg. ©)

The normalizing factor in (9) is chosen due to the following reasons. The space P! (H)
with this metric is the sphere S* with the standard metric of the constant sectional curvature
R™2. To see this we can consider a homeomorphism v : P'(H) — H = S* v(z;,20) =
21(z20)~! = z € H, where H is the quaternion space completed with the point at infinity. For
n = 1 formula (9) has the form

R? (dz) dz' + dza dzo) (|21 + |221%) — (dZ1 - 21 + dZ2 - 22)(Z) 2y + 22 dz2)
(Iz1 > +1221%)? .

Using the formula |z212dz) — z1Z2dz0 = |z2]2(d2) 22 by direct calculations we can reduce

expression (10) to the form

. 4R?>dz dz

S (L z?)?

g=4

(10)

8

which is the metric with the constant sectional curvature R~2 on the sphere S*.

The left action of the group Uy (n + 1), consisting of quaternion matrices A of the size
(n+1) x (n+ 1) such that A'A = E, conserves the scalar product (-, -) in the space
H"*!, dimg Ug(n+1) = (2n+3)(n+1). If we write every quaternion coordinates in H"*! as a
pair of complex numbers, then the group Up(n + 1) becomes the symplectic group Sp(n + 1).

Left and right multiplications always commute, so the left action of the group Uy (n + 1)
is correctly defined also on the space P"(H). Obviously, it is transitive and conserves
the metric g. The stationary subgroup of the point from the space P"(H) with the
homogeneous coordinates (1,0, ..., 0) is the group Ug(n)Ug(1), where the group Ug(n)
acts on the last n coordinates, and the group Ug(1) acts by the left multiplication of all
homogeneous coordinates by quaternions with the unit norm. All stationary subgroups
on a homogeneous space are conjugated and hence isomorphic. Therefore P"(H) =
Ua(n+ 1)/ (Un(n)Un(D)).

The Lie algebra ug(n + 1) consists of quaternion matrices A of the size (n + 1) x (n + 1)
suchthat A" = —A. Let E «; be the matrix of the size (n+1) x (n+1) with the unique nonzero
element equalling 1, located at the intersection of the kth row and the jth column. Choose the
base for the algebra ug(n + 1) as

1 . i
Yij = 5 (Exj = Eje) I<k<j<n+l Tij = 7 (Eij + Eji)

- K (11
ijz%(Ekj"'Ejk) ®kj=§(Ekj+Ejk) 1<k<]<n+1

2 To distinguish the point x € M from their coordinates we shall single out it by the bold type.
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The commutative relations for these elements are
[V W] = %(5jm‘1’k1 — 8 Wi + 8 Vim — 81 Vim)
(ki Yol = 38 Yt — Skm it + 815 Vom — 81 jm)
[Tk Yourl = 3O jm Wik + Sk Wij + S0 Wnj + 81 Wonk)
[(Tkjs Qo] = 38m O + 8km©1j + 81O + 81O

(12)

plus the analogous equalities, obtained from the latter three relations by the cyclic permutation
T—>Q—> 0 — T, where \I—’kj = —\I'jk, \I"kk = 0, Tkj = Tjk, ij = ij, ®kj = ®jk-

6. Algebras Diff(P"(H)s) and Diff(H™ (H)s)

Consider now the total space of unit spheres bundle P"(H)s over the space P"(H). Let
(z, ¢), where z € P"(H), ¢ € T,P"(H) be a general point of the space P"(H)s. Due to the
isomorphism P! (H) = S§* we assume here n > 2.

Let Zp = (1,0,...,0) € H"!, an element & € T3 H™' = H"! has coordinates
0,1,0,...,0). Putzy = 7y, {y = m.§y € T, P"(H).

The stationary subgroup K of the group Ug(n + 1), corresponding to the point (zy, ;)
is generated by the group K; = Ug(n — 1), acting on the last (n — 1)th homogeneous
coordinates and by the group K, = Uy (1), acting by the left multiplication of all homogeneous
coordinates by quaternions with unit norm. The algebra €, of the group K| (corresponding to
proposition 1) is (2n? — 3n + 4) dimensional and is generated by elements (11) with
3 <k < j<n+1and the elements:

n+l n+l n+l

Z Yk Z Qux Z Opk.
=1 k=1 k=1

Choose the complementary subspace p to the subalgebra ¥ in the algebra g = uy(n + 1) as
the linear hull of elements:

Wi Tie Que On 2<k<n+1 Wor T Qo O 3<k<n+1

i k
Y, = 5(E“ — E») Q. = =(E11 — Ex) 0, = E(Ell — Ep).

DN | =

13)

Taking into account relations (12) it is easily obtained that the expansion uyg(n + 1) = p & &
is reductive, i.e. [p, €] C p.
It is readily seen from (12) that setting

A=—-Vp ex—2 = Wi €3tk = Yik enom—ask = Qi
e 3n-5+k = Ok fark2=—¥x Sonzek = =T Soon—am = =0
Sfrn—ssk = — O k=3,....,n+1 en1 =T en2 = R

€33 =0 S =", Sao = S35 = O

(14)

we obtain the base from proposition 1 for g; = 4n — 4, g, = 3.

Now we find the full set of independent Adg,-invariants in S(p). According to section 4,
the expansion p = a @ €, @ &, @ p, @ Py, is invariant w.r.t. the Adg,-action. In the space a
the Ky-action is trivial that gives the invariant Dy = A € pu(pX°), already found in section 4.
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From formulae (14) we see that the space p; = H"~! consists of matrices of the form

0 0 —q —0y—1
. o o o ... 0
(e T I PR
a,-;1 0 0 ... 0
Likewise, the space €, = H"~' consists of matrices of the form
0 0 o ... 0
0 0 0 0 0 —1_71 —1_7,,,1
00 —bp|=|0 &b 0 ... 0 bi,... by € H.
0 » O : : : : :
0o b,y 0 ... 0

Due to the formula

1 0 0 —a* 1 0 _ 0 —(Ua)* .
<O U)(“ 0><0 U*)_<Ua 0 ) UeUain—1) acHl

the action of the group K; on the space p; is equivalent to the standard action of the group
Un(n — 1) onthe space H" ™! : @ — Ua. In the space £, the action of K is similar: b — Ub.

The standard action of the group Ug(n — 1) on the space H"~! has one independent
real invariant: (z,z),z € H"~', and the diagonal action of Ug(n — 1) on the space
P, @8 = H"! @ H"' has six (independent iff n > 3) real invariants:

(z1,2;) € R (Zp,2,) € R (z),2,) € H=R* 71,2, € H" . (15)
Denote the corresponding elements from 1 (pX1) € U(g)*" in the following way:
n+l n+l
D, = Z (V3 + 15 +Qf, +OF,) D, = Z (U3 + T3, +Q3, + ©3)
k=3 k=3
n+l
D3 =—3 D (Wi W) + (Tiie Yo} + {Ques i} + (O, One))
k=3
1 n+l
Di=> D Wi ) + (Wi, T} + (O, Qi) — (O, Qi) (16)
k=3
n+l
1
= 7 D (Wi Qe+ (Yo, Qued + (Tii, O} — { Tk O
k=3
n+l
Os = 2 3 (—{W, O+ {Wa, Oneh + {R6 Taud — (R, T
k=3

If n = 2, then there is the unique independent relation between invariants (15):
2z 2 2,12
(z1, 22)|” = |Z122]” = 2117 |22]” = (21, 21)(22, Z2), 21 = 21,22 = 2o € HL. (17)

If we write this identity in coordinates, then we will obtain the well-known Euler identity
which is the key ingredient in the proof of the Lagrange theorem from number theory: if two
integers have the form a+b*+c*+d% a,b,c,d € 7, then their product has the same form.

The elements D;, D,, D3, already found in section 4, are invariant w.r.t. the action
of the whole group K, therefore they correspond to operators of the second order from
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Diff(P"(H)s). The elements [y, [y, [J3 are not invariant w.r.t. the action of the group
K> = Ug(1). Obviously, the K;-action on the linear hull of elements [J;, [, L3 is equivalent
to the well-known action of the group SO(3) = Uy(1)/(1, —1) on the space H' of pure
imaginary quaternions:

X — gxq xeHl q € Ug(1)

after the identification [} < i, [J; < j, ;3 < k.

The K;-action on three-dimensional spaces po;, &, is the same after the identification
T, Ti < i; Qp2, Qi < J; O12, O, < Kk; while the K -action on these spaces is trivial. Thus
we find invariants of diagonal action of the group SO(3) on the space R? @ R* @ R?. Itis clear
that there are 6 = 9 — 3 such independent invariants:

x,x), (y.y), (z2), &Yy, &xz) (zVy), x.y.zeR’
and invariant (X, y, z) = (X, y x z) algebraically connected with the first six:
(x5, 2’ =xXy'2 +2(x,y)(x, 2)(y, 2) — X (y,2)’ -y (x,2)° — 2’ (x,y)’ (18)

where y x z is the standard vector product in R?. Relation (18) can be verified using the
well-known formulae: (x,y)? = x’y?> — (x x y)2 and X X (y X X) = (X, 2)y — (X, y)Z.
It gives the following invariants from U (g)Xo:

Dy =Y} +Qf,+01, Ds =72+ Q2+ 0?2

De = $({Yi2. 1o} + {Qu2. ) + {O12, ©,))

D7 = ({001, Tia} + {z, Qua} + {3, O12}) (19)
Dy = 1({00, T} + {0, Q)+ {05, 0.) Dy =R +3+03

Dip =020, — 012,01 +[hY,015 — [h Y120, + 32, Yo — 3257

Here we took into account that every three factors from all summands in the last expression
pairwise commutate. The invariants Dy, Ds, D¢ correspond to the general case, considered in
section 4.

In fact invariants D7, Dg, Dy and D1 are not in 1 (pX°) because they are not symmetric
w.r.t. all transpositions of their factors of the first degree. After complete symmetrization we
can obtain invariants from 1 (pX0) : Dy = Dy + D} mod (U (g)&)%°, k = 7, 8, 9, 10, where D}
are elements from U (g)%° with deg D} < deg Dy. For convenience we will use elements Dy
instead of Dy, k = 7, 8,9, 10.

Thus operators Dy, ..., Do generate the algebra Diff (P" (H)g).

The degrees of the generators are as follows:

deg(Dy) =1 deg(D) = deg(Dy) = deg(Ds3) = deg(Dy) = deg(Ds) = deg(Dg) = 2
deg(D7) = deg(Ds) =3 deg(Dyg) = deg(Dyo) = 4.
(20)

In the model of the space P" (H) we can transpose the coordinates z; and z,. The operators
Ds, Dy, Ds, Dg, Dy, Dy are symmetric (invariant) w.r.t. this transposition and the operators
Dy, Uy, Oy, O3, D, D7 are skew symmetric. The operators D, and D, turn into each other
under this transposition.

It is easily verified that automorphisms ¢,, o actson L;, D7, ..., Dyp,i = 1,2,3 as
Ce() =1 i=1,2,3 o (D7) = cos(a) D7 — sin(a) Dg
Ca(Dg) = sin(a) D7 + cos(a) Dg Ca(D9) = Dy ¢a(D19) = D1 o) = -1
i=1,23 o(D7) = Dy o(Dg) =—=Dg  o(Dy) = Dy o (Do) = Dip.
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Taking into account their action on other generators (see section 4) we obtain that the
transposition of z; and z; is equivalent to the composition o o ¢ .

In order to get the generators of the algebra Diff (H” (H)s) one can use remark 1, formula
(14) and make the formal substitution:

A — iA \Iflk — i\I’lk le — ile Qlk — ink

®lk e i@]k T]z — iT]z Q[z e iQ]z @12 e i@]z

Wor — Wy Tor — Yo Qo — Qo Oy — Oy

T, — Y, Q —> Q. O, — 0O, k=3,...,n+1.
This substitution produces the following substitution for the generators Dy, ..., Djo:

D() — IDO Dl — _Dl D2 — Dz D3 — 1D3

D4 — —D4 D5 — Ds D6 — 1D6 D7 — —D7 (21)

Dg — iDg D9 — —Dg D]O — _DIO'

The operators Dy, ..., D generate the algebra Diff (H" (H)s).

7. Relations in algebras Diff(P™(H)s) and Diff(H™ (H)s)

Here we find the independent relations in Diff (P" (H)s) for its generators Dy, ..., Dig. They
are of two types (see section 2). The first type is commutative relations, because a commutator
of two differential operator of orders m| and m; is an operator of an order ms < m| +m, — 1.
It gives 11(11 — 1)/2 = 55 relations. If n > 3 due to (18) the second type consists of only
one independent relation of the form

D}y — DyDsDg — 2DgD7Dg + Dy D + DyDj + DsD7 = D’ (22)

where D’ is an operator of order <7, which is polynomial in Dy, ..., Dyo. If n = 2 formula
(17) gives another independent relation of the form

1D\, D2} — D — Dy = D"

where D" is an operator of order <3, polynomial in Dy, ..., Dg. The direct calculations give
D" = D + D,, therefore in the case n = 2 we have the additional relations:

WDy, D2} — D — Do = Dy + D;. (23)

For n = 2 using this relation we can exclude the element Dg from the list of generators.

In principle, all relations can be obtained by straightforward calculations in U (g) modulo
(U(g)®)X0, but these calculations became too cumbersome to write all of them here. In
appendix A there is an example of deriving some commutative relations. After getting
some commutative relations by direct calculations it is possible to get some other ones (see
appendix A) using the Jacobi identity:

[Di, [Dj, D]l + [Dy, [Di, Di11+ [Dj, [Dg, Di]] =0

which is valid, in particular, in every associative algebra. This identity gives also a tool
for checking the commutative relations already found. Below there are all 55 commutative
relations in lexicographic order. Relation (22) becomes too difficult to obtain in a similar way.
Maybe we need computer algebra calculations to obtain the explicit expression for D’
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[Do, D1] = —Ds [Do, D;] = D3 [Dy, D3] = 1(D| — D»)
[Dy, D4] = —2Ds [Do, Ds] = 2Dg [Do, D] = D4 — Ds
[Dy, D7] = —Dg [Dy, Dg] = D [Do, Do] =0

[Do, Dip] =0 [Di, D3] = —{Do, D3} —2Ds

[D1, D3] = —3{Dy, D1} + Dg +n(n — 1) Dy

[D1, D4l = 2Dy [Dy,Ds5]=0 [Dy, Dg] = Dg

[D1, D71 = —3{Ds, Dg} — ${D1, D3} + 3(D1 — Dy) + Do + D1g +n(n — 1) Dy
[D;. Dg] = —3{D3, Ds} — 3{Dy, D¢} + 3 D3 +n(n — 1) Dg

(D1, Dol = —{Ds, Dg} — {Dy, D7} — 3{Do, D3} +2(n — 3)(n + 3) D

[D1, Dyl = 3{De, D} — 3{Ds, D7} + 3{Dy, D3} + 1 D5

[D,. D3] = 3{Dy, D>} + Dg — n(n — 1) Dy [Dy, Dy] = —2D5

[D>, Ds]=0 [Ds, D¢l = —Dg

[D2, D71 = —3{Ds, Dg} + ${D3, D4} + 3(Dy — D2) — Dy — D1y — n(n — 1) Dy
[D, D] = —3{D3, Ds} + 3{Ds, D} + 3 D3 — n(n — 1) De

[Ds, Dol = —{D3, Dg} +{D3, D7} + 3{Dyo, D3} —2(n — 3)(n+ 1) Dy

[D,. Dio] = —3{Ds, Ds} + 3{Ds, D7} — 3{Do, D3} — 3D [D3, D41 =0

[Ds3, Ds] = 2Dg [Ds, De]l = Dy [D3, D71 = —1{D; + D,, D¢} +n(n — 1)Ds
[Ds, D] = —3{Dy + Dy, Ds} +n(n — 1)Ds + Do + Dyg

[D3, D] = —3{Dy + Dy, Dg} + 3{Dy, Dy — D>} +2(n — 3)(n + 3) Ds

(D3, Dyl = 3{D¢. D7} — 5{D4, Dg} — :{Do, D; — Dy} + 5 Dg

[D4, Ds] = —=2{Dy, D¢} [D4, D] = —{Dy, D4} + 3 Do

[Da, D71 = 3{D1 — D2, Dy} + 3(D2 = D1)  [Ds, Ds] = 5{Dy — D1, Ds} — (Do, D7}
[D4, Do] = {D\ — D>, D7} [D4, D1o] =0 [Ds, D] = {Dy, Ds} — 3Dy

[Ds, D71 = {Ds, D¢} + {Do, Ds} [Ds, Dg] = {D3, Ds} — 3 D3

[Ds, Dg] = 2{D3, Ds} [Ds, Dio] =0

[De. D71 = 1{D — D5, Dg} + 5{D3, D4} + 3{Do, D7} — 3 D5

[Ds, Dg] = {D\ — D, Ds} + 3{D3, D¢} — 3{Do, Ds} + 3(D, — Dy)

[Ds, Do] = 3{D\ — D, Ds} +{D3, D7} [De, D10l =0

[D7, Ds] = {{D\ — D, Ds} — ${D3, D7} + &{Dy, D1 + D5}
— 3{Do. Do + D1} — 2n(n — 1) Dy

[D7. Do) = }{D3, De} + ${D1 — D2, D4} + 3{D\ — D3, Do + D1o} — (D} — D3)
+3(n* —n— 1) (D) — Dy)

[D7. Diol=3{D> — Dy, D¢} —{{Do. D7}, De}+5{{Do. Ds}, Dg} + 3{{D1— D, Ds}, D4}
— 1{D3, Dg} + §{D; — Dy, 3Dy + Ds} — 3{Dy, Ds} + 33 (D — D)

[Ds, Do) = ¢{D\ — Dy, D} + 3{D3, Ds} — 3{D3, Dy + Dy}
+{D3, Dy + Do} + 2 (n* —n — 1) D5
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[Ds, Dyo] = —3{{D3, D}, D6} + 1{{ Dy, Dg}, Ds} — 1{{Do. Ds}, D7} + 1{{Ds, Ds}, Ds}
— 3{D3, Ds} — 1{D3, D4} + 1{Do, D7} + 1: D3
[Do, Dyo] = }{—{Ds, Ds} +{Ds, D7}, Dy — Dy} + 1{{Ds, D}, D4}
— (D5, D¢}, D7} + }{D, — Dy, D7} — 3{Ds, Ds}.
(24)

Itis interesting that the operators Dy and D arise in the right-hand sides of these relations
only in the combination Dg + Dj.

Using relations (24) it is not difficult to verify that the operator D* = Dg + D+ D, +
D4 + Ds lies in the centre of the algebra Diff (P” (H)g) in accordance with section 4.

Using substitution (21) one can obtain from (24) the commutative relations for the algebra
Diftf(H" (H)s).

The analogue for the operator D* from the centre of the algebra now becomes
D* = D} + Dy — Dy + Dy — Ds € Diff(H"(H)s). In the case n = 2 the additional relations
(23) become

WDy, Dy} — D3 — Dy = Dy — D».

8. Algebras Diff(P"(C)s) and Diff(H"(C)s)

8.1. The model for the space P"(C)

Taking the factor space of C"*'\{0} w.r.t the action of the multiplicative group C* = C\{0}
(due to the commutativity of the complex multiplication it makes no difference left or right),
we obtain the complex projective space P*(C). Let 7 : C**1\{0} — P"*(C) be the canonical
projection. Let now (X, y) := 27:1 Tivi,X = (X1, ..., Xnr1), Y = V1, ..., Yus1) € € be
the standard scalar product in the space C"*!.

The metric g of the constant holomorphic sectional curvature on the space P" (C) is defined
by the same formula (8) as on the space P" (H), where now z € C"*'\{0}, ¢, € T,C™' ¢, =
& € Try(P"(C)), i =1, 2.

The Riemannian metric g on the space P"(C) is

g =4R’Reg. (25)
If n = 2 it is not difficult to verify (as in section 5) that the homeomorphism 7 : P'(C) —
C=8? 1(z1,22) = z21(z2) "' = z € C, transforms (25) into the metric
_ 4R%dzdz
$T a2

of the sectional curvature R~ on the sphere S2.

The left action of the group G = SU (n+1) on the space C"*! conserves the scalar product
(-, -) and induces the action on the space P"(C), conserving metrics g and g.

The stationary subgroup, corresponding to the point of the space P" (C) with homogeneous
coordinates (1 : 0:...:0),is the group U (n) = SU (n)U (1), where the factor SU (n) acts in
the standard way on the last n coordinates, and the factor U (1) acts by multiplication of the first
coordinate by e and the second one by e, ¢ € R mod 2. Thus P*(C) = SU (n+1)/U (n).

Choose a base of the algebra su(n + 1) in the form

i :
Wy = 1(Ex; — Ej) Yy = Q(Ekj +Ej) I1<k<j<n+l (26)
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n=%<En—Ekk) 2<k<n+l. @7)

The commutators for these elements are easily extracted from (12), taking into account that
T = %(T“ — Yyi) using the notation from (11).

8.2. Algebras Diff (P"(C)s) and Diff (H" (C)s)

Consider now the space P"(C)s. Due to the isomorphism P!(C) = S? we again assume that
n>=2.

Let Zp = (1,0,...,0) € C™!, an element &, € T;C"!'=C"*! has coordinates
0,1,0,...,0). Putzy = 7y, {y = m.§y € T, P"(C).

The stationary subgroup K of the group SU (n + 1), corresponding to the point (zg, &),
is generated by the group K| = SU(n — 1), acting on the last (n — 1)th coordinates and by
the group K, = U (1), acting on the homogeneous coordinates of P"(C) as

TR R I N G TR TR el TR TH N ey (28)

dimg Ko = (n — 1) and we obtain Ko = U (n — 1).
The algebra € of the group K| is the linear hull of elements (26)as3 < k < j < n+1
and elements:

i . i
Tj—T3=§(E33—Ejj) 3<]<}’l+1 2T3—T2=§(E||+E22—2E33).

Choose the complementary subspace p to the subalgebra € in the algebra g = su(n + 1)
as the linear hull of elements:

Wi YT 2<k<n+1 Wy Yor 3<k<n+1 T, =175 29)

Taking into account relations (12) it is easily obtained that the expansion su(n + 1) = p @ €
is reductive, i.e. [p, €] C p.
We will obtain the particular case of proposition 1 for g; = 2n — 2, g» = 1 setting

A=—-Vp enk— = Wik eun—3+k = ik frk—2 = -V

30
Sron—zsk = — Vo en1 =T S =" k=3,....,n+1. (30)

Now we find the generators of Adg,-invariants in S(p). The expansion p = a @ €, @
€, @ p; @ pay is invariant w.r.t. the Adg,-action. In the spaces a, p2,, £, the Ky-action is
trivial that gives the invariants Dy = A, D4y = Y15, Ds = Y, € u(pX°). Operators Dy, Ds
are square roots of their analogues from section 4.

From formulae (30) we see that the space p; = C"~! consists of matrices of the form

0 0 —ay ... —dp—1
o o0 o0 ... 0
(2 _S>E ai 0 0 0 aip,...,a,_1 €C.
an—1 0 0 e 0
Similarly, the space £, = C"~! consists of matrices of the form
0 0 o ... 0
00 0 0 0 —by ... —by
00 —b|=[0 & 0 ... 0 bi,...,by €C.
0 b 0 . . . ) .

0 b,y 0 ... 0
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The action of the group K on the spaces p; and £, is equivalent to the standard action of the
group SU (n — 1) on the space C"~!' : @ — Ua, U € SU(n — 1), likewise in section 6. It is
easy to verify that the action (28) generates the action a; — exp ¥ a, a; — exp % q;, b; —
exp % by, b — exp ' b;,i =2,...,n— 1. Therefore, the K(-action on spaces p;, and &, is
equivalent to the standard U (n — 1)-action on cr .

This action has one independent real invariant: (z, z), z € C"~!, and the diagonal action of
U(n — 1) on the space p; @ &, = C"~! @ C"! has four (independent iff n > 3) real invariants:

(z1,2;) € R (z),2,) € R (z1,2,) € C=R? 2,7, € C"\. (31)
Denote the corresponding elements from u(p%°) € U(g)X° in the following way:
n+l n+l
Dy = Z (‘plzk + lek) Dy = Z ("IJZZk + Y22k)
k=3 k=3
n+l n+l (32)
D; = ) ;({‘I’m, Wi} + {T1es Yoi}) 0= 3 ;(—{‘1’11{, Tor} + {(War, Yix})-

In this case only operator [] is new w.r.t. section 4.
If n = 2, then there is the unique independent relation between invariants (31):

(21, 2)* = [2122* = |21 Pl = (@1, 2) (22, ) zZi=21  m=2eC.  (33)
Thus operators Dy, ..., Ds, [J generate the algebra Diff (P" (C)s).
The degrees of the generators are as follows:
deg(Do) = deg(Dy) = deg(Ds) =1 deg(Dy) = deg(Dy) = deg(Ds) = deg(L) = 2.
(34)
The operators D3, D4 are symmetric and the operators Dy, [], D5 are skew symmetric
w.r.t. the transposition of coordinates z; and z,. The operators D; and D, turn into each other
under this transposition.

In order to get the generators of the algebra Diff(H"(C)s) we can use the formal
substitution:

A — iA Wy — iy, Ty — iy, T, — iy,
Wy — Wy, Yor — Yo Y, — Y, k=3,...,n+1.
This substitution produces the following substitution for the generators Dy, ..., Ds, LI
Dy — i?o D, —> —_Dl D, — _Dz ) 35)
D3 — iDy Dy — iDy 0 — il Ds — Ds.
The operators Dy, ..., Ds, (] generate the algebra Diff (H" (C)s).
8.3. Relations in algebras Diff (P"(C)s) and Diff (H" (C)s)
The commutative relation for the algebra Diff (P" (C)s) are as follows:
[Do, D11 = —=Ds [Do, D2] = Ds [Do, D3] = %(Dl — D)
[Do, D4s] = —Ds [Do, Ds] = Da [Do, L] =0
1 1 (n—1)?
[D1, D2] = —{Do, D3} — {LJ, D4} [D1, D3] = _E{DO’ Dy} + E{D’ Ds} + Dy
1 1 (n— 1)
[Dy, Ds] =0 [Dy, Ds] =0 [Dl,D]=—§{D1,D4}—§{D3,D5}+ Dy
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(n —1)?

1 1
[Ds, D3] = E{DO’ Dy} + E{D’ Ds} — Dy [Di, D4l =0

(n —1)?

1 1
[Dy, Ds]=0 [D,, 0] = §{D27D4}— E{DSsDS}_ Dy [D3, D4] =0

(n —1)?

1
[D3, Ds] =0 [D3, 0] = _Z{Dl + D, Ds} + Ds [Ds4, Ds] = —Dg

1
[D4, U] = E(Dl —D») [Ds, U] = Ds.
If n > 2 then there are no relations of the second type. If n = 2 then there is one relation
of the second type due to (33):
1Dy, D)} — D} —O* — 1(Dj + D} + D3) = 0. (36)
It is easy to verify that the operator D* = Dj + Dy + D, + D} + D? lies in the centre of the
algebra Diff (P"(C)s) in accordance with section 4.

Using substitution (35) we obtain analogous relations for the algebra Diff (H" (C)s).
The commutative relation are now as follows:

_ _ _ _ _ _ _ _ 1 _ _ _ _ _
[Do, D1] = D3 [Do, D2] = D3 [Do, D3] = E(Dz +Dy) [Do, D4] = D5
[Do, Ds] = Dy [Do,0]1=0 [D1, D21 = —{Dy, D3} — {0, D4}

_ 1 - - | (n—1)>2 _ o -
[Dy, D3] = _E{DO’ Dy} — E{D’ Ds} — Dy [Dy, D4] = -1

o o I S A
[Dy,Ds] =0 [Dy, 0] = _E{D]’D4}+§{D3’D5}_ Dy

_ 1 - = 1 - —1)? . _ -
[Dy, D3] = E{DO’ Dy} + E{D’ Ds} — =D Dg [Dy, D4] = -0

o ol .1 . (=12
[Dy, D5s] =0 [D,, 0] = §{D2, Dy} — §{D3, Ds} — Dy

Ty
(n I)DS

_ _ _ _ _ - 1 - _ _
[D3, D4] =0 [D3, Ds] =1 [Ds, 0] = _Z{Dl — Dy, Ds} —

_ _ _ _ - 1 _ _ _ - _
[D4, Ds] = —Dy [Dy4, 0] = E(Dl + D») [Ds, 0] = Ds.

If n > 2 then there are no relations of the second type. If n = 2 then there is one relation
of the second type analogous to (36):

YD\, Dy} — D3 —OF — 1(Dg + D} — D3) = 0. 37)
The operator D* = l_)(z) +D,—Dy+ D_i - [_)g lies in the centre of the algebra Diff (H" (C)g).

9. Algebras Diff(P"(R)s), Diff (Sg) and Diff(H"(R)s)

9.1. Generators of algebras Diff (Sg) and Diff H"(R)s)

Let now (-, -) be the standard scalar product in the space R"*!'. The equation (x,x) = R > 0
defines the sphere 8" = SO(n + 1)/SO(n) C R"*! of the radius R with the induced metric on
it. The space P"(R) is the factor space of S” w.r.t. the relation: x ~ —x. Below we will show
that algebras Diff (P" (R)s) and Diff (S%) are isomorphic.

The spaces Sé, P'(R)s are one dimensional and the algebra of invariant differential
operators on them is generated by one differential operator of the first order. Therefore, we
again suppose that n > 2.
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Let
Wy = L(Ey — Ejp) 1<k<j<n+l (38)

be the base of the algebra so(n + 1). The commutative relations for them are contained in (12).

Consider the space SZ. Let Zg = (1,0, ...,0) € R™!, an element &, € T;,R"! =R
has coordinates (0, 1,0, ..., 0). Putzy = nZo, {; = m.&y € Tp,S§.

The stationary subgroup Ky of the group SO(n + 1), corresponding to the point
(2o, €o) € SE, is the group SO(n — 1), acting onto the last (n — 1)th coordinates.

The group SO(n + 1) is a group covering of the identity component G of the isometry
group for P*(R). The group Ky = SO(n — 1) C SO(n + 1) is a group covering of its analogue
K{ C G. Thekernel of such covering is a normal subgroup of SO(n— 1) that lies in the centre of
SO(n —1) [17] (lecture 9). Therefore, the orbits of Adg,- and Ad K(;-actions onp C gcoincide
and the construction from section 2 implies the isomorphism Diff (P" (R)s) = Diff (Sg).

The algebra &y of the group Ky is the linear hull of elements W;; as 3 <k < j <n+1.
Choose the complementary subspace p to the subalgebra €, in the algebra g = so(n + 1) as
the linear hull of elements:

Wiy 2<k<n+1 Wy 3<k<n+l. (39)

The expansion so(n + 1) = p @ so(n — 1) is reductive.
We will obtain the particular case of proposition 1 for g; = 0, g» = n — 1 setting

A =-2¥, e k-2 = 2W¥; fonk—2 = —2Wy k=3,....n+1. (40)

Now we have the expansion p = a @ €, @ p,,, which is invariant w.r.t. the Adg,-action.
It is easy to see that on the space a the Ky-action is trivial and on the spaces €, and p»; it is
equivalent to the standard action of the group SO(n — 1) on the space R"~!. The Ky-action
on the space a has the invariant Dy = A. The description of base Ky-invariants on the space
P25 @ by, is different in casesn = 2,n =3 and n > 4.

9.1.1. The case n > 4. The SO(n — 1)-action in R"~! has one independent real invariant:
(z,2),z € R""!, and the diagonal action of SO(n — 1) on the space 1o, @ & =R @ R*!
has three independent real invariants:

(21,21) (22,22) (21, 2) 7,7 e R"L. (41)

Denote the corresponding elements from w(pX0) € U (g)X° in the following way:
n+l n+l n+l

D, = 4Z\y12k D, = 42\1122k Dy = -2 Z{‘Iﬁk, W}
k=3 k=3 k=3

All these invariants were found in section 4 for the general situation.
Thus operators Dy, Dy, D>, D3 generate the algebra Diff (S%).
The degrees of the generators are as follows:

deg(Dy) =1 deg(D;) = deg(D;) = deg(D3) = 2. 42)

The operator D3 is symmetric and the operators Dy is skew symmetric w.r.t. the
transposition of coordinates z; and z,. The operators D; and D, turn into each other under
this transposition.

9.1.2. The case n = 2. In this case K| is the trivial group and the independent invariants
are Dy, D; = e3,,1, Dy = fa;,1. Thus the algebra Diff (S3) is isomorphic to U (s0(3)). The
centre of this algebra is generated by the operator D(z) + D% + D%.
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9.1.3. The case n = 3. In this case Ky = s0(2) and we have the additional (with respect to
the case n > 4) invariant of the second order
O =2({W13, Wag} — (W14, Wa3}).

It is algebraically connected with operators Dy, Dy, D,, D3 which are defined as in the case
n=>4.

9.1.4. Generators of the algebra Diff (H"(R)s). First, let n > 4. In order to get the
generators of the algebra Diff (H” (R)s) we can use the formal substitution:
A — iA U — Y Wy — Wy k=3,...,n+1.
This substitution produces the following substitution for the generators Dy, ..., Ds:
DO — lD() Dl — —D1 Dz — D2 D3 — 1D3 (43)
The operators Dy, ..., D3 generate the algebra Diff (H" (R)s). )
In the case n = 3 we have the additional substitution [ — i[] and the operators
Dy, ..., D3, [ generate the algebra Diff (H?(R)s).
In the case n = 2 we obtain the substitution
Do — lDo D1 — iDl D2 — Dz.

The algebra Diff (H?>(R)s) is isomorphic to U(so(2, 1)) and its centre is generated by the
operator D(% + D12 - D%.

9.2. Relations in algebras Diff (Sg) and Diff H"(R)s)

Here we shall consider only the case n > 3, since Diff(S3) = U (s0(3)) and Diff(H*(R)s) =
U(so(2, 1)).
The commutative relations for the algebra Diff (Sg) are as follows:
[Do, D1] = =2Ds [Do, D] =2Ds [Do, D3] = Dy — D,
(n—1)n-3)
[D1, Do] = =2{Dy, D5} [D1, D3] = —{Dy, D1} + fDo
(n—1)m-—3) D
2
For n = 3 the additional operator [ lies in the centre of the algebra Diff (Sg).
If n > 3 then there are no relations of the second type. If n = 3 then there is one relation
of the second type:

[Ds>, D3] = {Dy, D>} — 0-

1D\, D;} — D§ = D3 + . (44)
It is easy to verify that the operators D} = D3 + D + D, and
1 —3)(n—1
D; = 3(D1. D2} - D} + (1 - (")4#) (Dy + Dy)

lie in the centre of the algebra Diff (Sg). If n = 3 it holds that D; = 02 + Dy due to (44). In
this case two operators D} and [J generate the centre of the algebra Diff (S3).
Using substitution (43) we obtain analogous relations for the algebra Diff (H" (R)s).
The commutative relation are now as follows:
[Do, D11 =2Ds [Do, D71 =2Ds [Do, D3] = Dy + D,
_ _ _ _ n—1)n-3) -
[D1, D2] = =2{Dy, D3} [D1, D3] = —{Dy, D1} — fDo
—1(n—-3) -
(n—1)(n—3) b

[D,, D3] ={Dy, Dy} — >

0
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and for n = 3 also
[Do, 0] = [D,,0] = [D,, 0] = [D;, 0] = 0.
The first three relations were found in [4], but the other relations were not calculated there.
If n > 3 then there are no relations of the second type. If n = 3 then there is one relation
of the second type analogous to (44):
YD\, Dy} — Dy = D3 + 7. (45)
The operators D} = D; + D; — D, and
U - —3)(n—1
D; = S{Di, Do} — Dl + <1 _ (”)4#

lie in the centre of the algebra Diff (H" (R)s) and if n = 3 it holds that D = [J? + D] due to
(45). In this case the operators DT and [ generate the centre of the algebra Diff (Hé)

> (D — D»)

10. The model of the space P?(Ca)

Our description of Caley algebra Ca and the octonionic projective plane P>(Ca) in this section
is based on [16-18].

10.1. The algebra Ca

According to Frobenius theorem there are only four finite-dimensional division algebras over
R: Ritself and algebras C, H, Ca. The latter is an eight-dimensional normed division algebra
of octonions. Itis noncommutative and nonassociative, but alternative, i.e. for any two elements
&,n € Ca it holds that (§n)n = £(nn) and £(&n) = (££)n. The group of all automorphisms
of Ca is the exceptional simple compact 14-dimensional Lie group G,. The standard base of
Ca over Riis {e;}]_,, whereeg = 1 e Rand e} = —1,e;e; = —eje; i, j=1,...,7,i # j.
The elements {ei}zzl are multiplied according to the following scheme:

€6

€3 €1

€5 es €7

Here e;e; = e if these elements lie on one line or on the circle and are ordered by
arrows as e;, e;, ex. The conjugation ¢ : Ca — Ca acts as t(eg) = ey = ep, t(e;) =
e, = —e;,i = 1,...,7 and is extended by linearity over whole Ca. Let Re& =
%(E +£&),Imég = %(E — £),& € Ca. Define the scalar product in Ca by the formula:
(n, &) = (7€ + En) = Re(En) = Re(7€) € R and the norm by the formula [|n|| = (n, n)"/2.
In the algebra Ca every two elements generate an associative subalgebra and the following
central Moufang identity is valid:

U-Xy- -u=ux-yu u,x,y € Ca. (46)

Here we use the notation u - xy := u(xy), xy - u := (xy)u.
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There are the following descriptions of spinor and vector representations (all eight
dimensional) of the group Spin(8) in Ca [17, 19], which will be used later. Define linear
operators in Ca:

La:§|—>%ea§ a=1,...,7 £€eCa
Log & > jeq(ep) I1<a<p<7 &eCa.

These operators are generators of the left spinor representation of the group Spin(8), i.e. they
are the images of some base of the Lie algebra spin(8) under this representation. Similarly,
operators

Ry : &> LEe, a=1,...,7 &eCa,
Rup &> (Eeples I1<a<B<7 £e€Ca

are generators of the right spinor representation of the group Spin(8). All these operators are
skew symmetric w.r.t. the scalar product in Ca.

The formulae above define operators Ly g, Ry g also for 1 < g <o < 7. If Cd’ is the
space of pure imaginary octonions, u € Ca’, & € Ca, then due to the alternativity of Ca:

Eu-u=¢Eu’ = —&ul> = —|ul’ =u - uk.
Foru =e, +eg, 1 <a < B < 7itholds that

—2& = —$|ea+eﬁ|2=§(6a+eﬁ)-(eo,+e,g) =&ey-eq+Ee,-egt+Eepg-e,+Eeg-ep
=—&+&ey-ept+beg-e,—§&

and ée, - eg+E&eg - e, = 0. Similarly, e, - egé +eg-e,6 =0. For0 <i,j <7,i # j wecan
write more general formulae, useful in the following:

e,»-ejgz—éj-é,-f Eei-ejz—ée'j-e',- ée(Ca. (47)

In particular, we have Ly g = —Lg o, Rop = —Rpo, 1 <o, B <7, # B.

For the element g € Spin(8) denote by g%, g% and g" its images under left spinor, right
spinor and vector representation, respectively. The following proposition is a version of the
triality principle for the group Spin(8).3

Proposition 2 ([17]). For any element g € Spin(8) it holds that

gV En =g"& - g"m) £,1n e Ca. (48)

Conversely, if A, B, C are orthogonal operators Ca +— Ca such that
A(En) = B(§) - C(n)
for any £, n € Ca, then there exists unique g € Spin(8) such that A =g", B = g-, C = g&.

From equation (48) we obtain its infinitesimal analogues:

Vitgn) =Li() -n+§- Ri(n) i=1,...,7 (49)
Vij&n =Li;j€)-n+&-Ri;j(n) 1<i<j<7 §neCa (50)
where V; and V; ; are generators of the vector representation of the group Spin(8).

3 Other versions of this principle are in [16].
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10.2. The Jordan algebra Hh3(Ca)

The Hermitian conjugation A +— A" for a square matrix with octonion entries is defined
as the composition of octonionic conjugation and transposition of A, similar to complex or
quaternion cases. A matrix A is called Hermitian ifft A* = A. The simple exceptional Jordan
algebra h3(Ca) consists of all Hermitian 3 x 3 matrices with octonion entries. It is endowed
with the Jordan commutative multiplication:

XoY =1(XY+YX) X, Y € h3(Ca).

This multiplication satisfies the identity (X? o ¥) o X = X? o (Y o X) which is the condition
for an algebra with commutative (but not necessarily associative) multiplication to be Jordan.
The Jordan algebra h3(Ca) is 27 dimensional over R. Its every element can be represented in
the form

X=aEi+aEy+azEs + X((§1) + X2(5) + X3(83) (5D
where
1 0 0 0 0 O 0 0 O
E,=]10 0 O E,=10 1 0 Es=10 0 O
0 0 0 0 0 O 0 0 1
00 0 00 E 0 £ 0
X1§)=10 0 & X2&)=10 0 O X3 =1& 0 0
0 E 0 £ 0 0 00 0

ai €R,& € Ca,i =1, 2,3. Itis easy to show that

E. if i=j
EiOEf"{o it
0 it Q=
EioX~()={ pore 52
IO =lx,e i it 62

(& . m(E — Ej) it i=j

X,(S)OX](H):{%XH’J(Q) if ]El+1 mod 3

where E = E;| + E> + E3 is the unit matrix. In the last formula all indices are considered
modulo 3.

The group of all automorphisms of the Jordan algebra h3(Ca) is the exceptional simple
compact 52-dimensional real Lie group F4. This group conserves the following bilinear and
trilinear functionals: A(X,Y) = Tr(X oY), B(X,Y,Z) = A(X oY, Z). Conversly, every
linear operator h3(Ca) — h3(Ca), conserving these two functionals, lies in Fy.

Define the norm of the element (51) as || X||> = A(X, X) = Z?:l (ai2 + 2|§|2). The last
equality is the consequence of (52).

Theorem 2 (Freudenthal). For any X € h3(Ca) there exists an automorphism ® € Fy, such
that
OX =M E| +Ey + A3 E3 (53)

where Ay > Ly = A3, and the form (53) is uniquely determined by X. Two elements from
h3(Ca) lie on the same orbit of Fy iff their diagonal forms (53) are the same.
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10.3. The octonionic projective plane P*>(Ca)

Elements X € h3(Ca) satisfying conditions
X*=X TrX =1 (54)

form the octonionic projective plane P?(Ca), which is a 16-dimensional real manifold.
Automorphisms of h3(Ca) conserve equations (54) and the group Fy acts on P?(Ca). From
the Freudenthal theorem and equations (54) it follows that every element of P?(Ca) can be
transformed by an appropriate element of F to the element E1. Thus P?(Ca) is ahomogeneous
space of the group Fy and calculations in [17] (lecture 16) shows that the stationary subgroup
of every point X € P?(Ca) is isomorphic to the group Spin(9).

Let

X = (1 +a)E| +@mEy +a3Ey + X1 (&) + X2(5) + X3(&3) € P*(Ca)

where a;, |§;],1 = 1, 2, 3 are tending to zero. Then due to (52) we have

3
XoX=(1+2a)E +X:(5) + X3(&) +0 <Z (af + |5|2)>
i=1
and the equality X o X = X implies a; = a, = a3 = 0, &} = 0. It means that we can identify
the tangent space T, P?>(Ca) with the set {X»(£) + X3(£3)|£1, & € Cal.

Let K C F, be the stationary subgroup corresponding to the point E; and acting by
automorphisms in the space Tg P?(Ca) =~ {X,(&) + X3(&)|&,& € Ca). Let Koy be
the stationary subgroup of K, corresponding to the element X3(1) € Tg,P?(Ca).

According to section 4 we calculate the Ky-action on T, P?(Ca). For any element
X € h3(Ca) let Ann X := {Y € h3(Ca)|Y o X = 0}. Being an automorphism of the algebra
h3(Ca), an element ® € K conserves the space Ann X3(1). It follows from (52) that

Ann X3(1) = {a(El — E))+bE; +X3(S)|a, be R,é S (Ca’}.
Let ®(E| — E;) = a(E| — Ey) + bE; + X3(£), then we have

Il = A(E, — Ez, Ey) = A(Q(E| — E), D(E)))

= A(a(Ey — E2) +bE; + X5(8), E1) = a.

This implies ®(E; — E;) = E; — Ey + bE; + X3(€) and the equality ||E| — E»|| =
|®(E; — Ey)| gives b = 0,& = 0. This means that ®(E,) = E, and therefore
O(E3) = ®(E — E|y — Ey) = E— E| — Ey = E3. Thus the group K conserves elements
E., E;, E5.

Let K’ be the subgroup of F4 conserving element Ey, E,, E3. We see that Ko C K’ C K.
Since AnnE; = {aE; + a3E5 + X((§),a1,a; € R, & € Ca}, then the group K’ maps
X1(8) = X,(8) and similarly X;(&;) — X;(&),i=1,2,3.

Let ®; : Ca +— Ca,i =1, 2, 3 be orthogonal operators such that ®X; (&) = X;(P;(&))
for ® € K’'. The last formula in (52) implies
X3(@3(En) = P(X3(6n) =20 (X1(§) 0 Xo() = 2P(X1(§)) 0 P(X2(n))

=2X1(D1(8)) o X2(P2(m) = X3(P1(5)P2(m)).

It gives

1 (&)Pa(n) = P3(En) (55)

for® € K',&,n € Ca.
Denote by Ca;,i = 1,2,3 the domains for the operators ®;,i = 1,2,3. Then
TEIPZ(CG) ~ (Ca2 D (Ca3.
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Formula (55) and proposition 2 imply

Proposition 3. Operators ®, and ®, are respectively left and right spinor representations of
the group Spin(8) >~ K' and the composition 1 o ®3 ot is the vector representation of Spin(8).

The group Spin(8) is the universal (double) covering of the group SO(8) and their Lie
algebras spin(8) and so(8) are isomorphic.

Now consider representations of the Lie algebra £ of the group K’ in Ca;,i = 1,2, 3. All
these representations are faithful. For A € £ denote by A the corresponding skew-symmetric
operator in Ca;, i = 1,2, 3. From (55) we obtain the following infinitesimal analogue of the
triality principle:

AVE) n+E- AP @) = ADED). (56)

From (49) and (50) we obtain that if A" = L; (respectively A" = L, ;) then A® =
Ri, A®) =10 V; o (respectively A? = R; j, A® =10V, 00).

Let us identify the algebra ¢’ with its vector representation in Cas, in particular we put
A= A® for A € €. By x denote the inclusion €’ into the Lie algebra f, corresponding to the
group Fjy.

By definition, the Lie algebra £, of the group Ky C K’ consists of the skew-symmetric
operators in Cas, transforming 1 € Caj into 0. The group K is isomorphic to Spin(7), acting
in Ca; by the left spinor representation, in Ca, by the right spinor representation (equivalent
for Spin(7) to the left one, see (63)), and in Caj by the vector representation, which are
restrictions of analogous representations of K’ >~ Spin(8).

Let m be the space of 3 x 3 semi-Hermitian matrices with octonion entries and the zero
trace. Let

0 0 0 0 0 —£
eE=10 0 ¢ & =10 0 O
0 —E 0 £ 0 0
0 £ 0
e =|-E 0 0 £ eCa
0 0 0

be elements from m and the linear subspace my C m consists of elements of the form
3
D Yi&) & eCa
i=1

From [17] (lecture 16) we can extract the following proposition:

Proposition 4. For Y € m the linear operator adY : h3(Ca) — h3(Ca), acting according to
the formula adY (X) = YX — XY, X € h3(Ca) is the differentiation of the algebra h3(Ca).
Thus the space wm is contained in f4. There is the expansion into the direct sum of linear spaces

fa >~ € ®my

with the following commutator relations:

[xA,adY;(&)] = ad ¥;(AVE) i=1,2,3 (57)

[ad Y, (6), ad ¥; ()] = {"Ctzswn =i

ad Y40 (—£n) if j=i+1 (58)
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where A = A® e ¥, & n e Ca, operators AV are from (56), the indices in the last equation
are considered modulo 3 and semi-Hermitian operators Ci ¢, : Caz — Caz,i = 1,2,3 are
given by the following formulae:

Cien:l>t6-1—0(n-&
Cogn:C>7-6¢—E-nt, ¢ €Ca (59)
Cyeq: ¢ = 4E, On—40, 0)E.

The action of operators xC; ¢ , on the spaces Ca; and Cas is obtained from (59) by the
cyclic permutation of indices:

#Chgylca 2 ¢ > 46, On— 40, H)E

%xCogylca 1 ¢ > CE-T1—n-&

%Csgylca 1> 7-6C—E-n¢ (60)
%Creylca, : C > 7-§C—E-n¢

#Cok ylca, : ¢ > 4, On — 40, H)E

%xCigylca, 1 > CE-T—¢n-&.

Note that in [17] (lecture 16) analogues of formulae (55), (57) and the last formula (52) contain
errors.

11. Generators of algebras Diff(P?>(Ca)s) and Diff(H?(Ca)s)

Now we specify the construction from section 4 for the space M = P?(Ca)s.

11.1. The special base in a @ p; @ &, @ pay. D o,

It is easily seen that

[Y1(6), Ex]=0 [Y2(5), E1]l = X2(8) [Y3(8), Ei] = —X3(5) §€Ca
so we can identify the space T, P?>(Ca) with the space {Y>(£)+Y3(n)|€, n € Ca} C my. From
(57) we obtain that the expansion

{12(8) + Ys(§. n € Ca} = {Y3(§) 1§ € R} @ {V2(5)[§ € Ca} @ {Y3(§)I€ € Ca'}

is Adg,-invariant and by comparison with sections 3 and 4 we can put

a:={Y3(5)[§ € R} p. = {Y2(§)[§ € Ca} por = {¥3(§)[€ € Ca'}.

Let y = (Ei, 3X3(1)) € P*(Ca)s, where 3X3(1) € Sg,. We have T,P?(Ca)s =
T, P?(Ca) @ Tix,1)Sk, and

Tix,0)Se, 2 {X2(§)[§ € Ca} @ {X3(§)|§ € Ca').

Since ad Y{(£§)(X3(1)) = —X,(§),& € Ca, the space {X,(£)|§ € Ca} C Tgx3(1)SE1 is
identified with the space {Y(£)|& € Ca} C my. Since dimg{Y;(¢)|& € Ca} = 8 = dimg p;,
we denote £, := {Y(£)|& € Ca}. Thusmyg = a ® p; D p2;. D &,

Denote by A;; € ¥,i # j the generators of the rotation in the two-dimensional plane,

containing elements e¢;,e; € Cas, such that A;je; = ¢;, A;je; = —e;. The operators
Ajj,1 <1 < j < 7 are the base of the algebra €. Similar to the quaternion case the
subspace q of the algebra ¢ with the base Ag, =: Ay, @ = 1, ..., 7 is Adg,-invariant and is

identified through the Ky-action on Tsz((Ca)g with the space {X3(£)|E € Cd'} C T: X3(1)SE -
Therefore, we define £, := q. )
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Lemma 1. It holds that
1 2 (1 2)
AV =1L, A? =R, Ay =Lpa Ayl = Rpa
C3,eu,eﬁ = 4Aﬁ.a C3,eo,ea = _4Aa o, IB = 17 ey 7 (o4 ?é :3

Proof. From (56) we have

AD(E) = ADE) +EAD ().

Let AV = L, then A? = R, and A¥(¢;) = j(eqls +erea) = —3(erea + eqer). If
1 < k # «a, then exeq = —eqer and AP (e) = 0. Therefore, A® = A,, since
A®(1) = —ey, A¥(ey) = 1. This proves AV = L,, A® = R,.

Let now AV = Lg,, then A® = Ry, and A¥(ex) = 1(ep - ey + 2 - eaep) =
%(ekeu, - eg + egey - er). It is easy to verify by direct computation that if « = 1,8 = 2
then A®(e;) = 0, for k # 1,2 and AP (e)) = —es, A¥(ez) = ey. Thus L), = Ap.
Therefore, L/(;L = Ayp for any other pair of ¢,, eg, since the group G, of automorphisms
of Ca acts transitively on any pair of imaginary units [17] (lecture 15). This proves
AV =L, AY =R

af — HBa> B — NBa-
The last two equalities of this lemma are obvious. ]

Let us summarize these reasonings in the following proposition:

Proposition 5. Let

A= jadYs(er) o= 5dY30)  foa = xA

e = —1adY»(@) fri = 1adYi(e) Anp = 2 Anp
where Latin indices vary from 0 to 7 and Greek ones (except A) vary from 1 to 7. We have the
following commutator relations:

[A, €20l = = fria [A, f2ra]l = €20 (A, el =—1 fri (A, fril = e
[A, Ayl =0 (20> €2 5] = Apa [e2s.as for,p] = —Sap A [Poras frrp] = Apa
(€200 €171 = 5 fr.cue, (€200 fr. )] = 3€rcpe, [foras €rj] = =2 c0e,
[oras frj] = 3 Froeae; [ex.iv e, ;1= 1%Caz e, = % foreie; + 3%Cai P #]
[fais frj]= }T%Cl,e,,e/ = —%fzx,e,zj + %%él,i,j i #j
1 .

lexis frj]= _?A l - ]

—3€2¢¢ i #j
where we denote f,\,eae/ = fiiifese; = e and fx,eue‘,- = —fiiifeqe; = —e;. We use

analogous notation for e, ;, €.y, f.,. Here operators Cy; j,1 =1,2,i # j are in £, and
act as

C],,‘!j (ek) = érée; - éj € 5& 1, ieié_j C],i!j(ek) =0 e = 1, :I:e,‘éj
Czq,-,j(ek):ej -é,-ek ek;ﬁ 1,:|:eiéj Czq,',j(ek) =0 e = 1,:|:€iéj.
The chosen bases A, e i, en.as fois fro.a in spaces a,p,, P, b,y correspond to

proposition 1.

Proof. The commutator relations are easy consequences of (57), (58), lemma 1 and relations
in the algebra ¢’ ~~ so(8). For example, let us calculate the commutator [ f>; «, €, ;]. Actually,
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from (57) and lemma 1 we obtain
[forar €151 = —[xAq, 3ad Y2(2))] = =1 ad V2 (AD2;) = —§ ad V2 (Re2))
= _i ad YZ(éjeot) = iad YZ(éjéa) = _%ek,eae,-

Similar calculations are also valid for [ 25 o, fi,;]-
Now, let us calculate [e;, ;, 5 ;1,7 # j. From (58) we obtain

[erisenjl= %[ad Y>(e;),adYs(e;)] = %chz,@i,é, i# .
From (47) and (59) we obtain

%Czqéhéj(ek) = %(ej eiey —e; - ejey) = —e; - €jey.
In particular,

1Ca6(D) = —eig;  5Ca4.(ei) = —(e; €)= 1
SO

%%CZ,Z);,E/- = xAez, + #Caij = fores + xCa
where C‘z,,‘,j € €y and
Caijler) =e; - ey ex # 1, ke;e; Caij(eie;) = Cai (1) =0.

Similar calculations are also valid for [ f; ;, fi. ;1. O

11.2. Invariants in S(a @ p;, D €& & pr. D €y)

Invariant operators Dy, . .., D¢, corresponding to some Ky-invariants in S(a @ p, @D €, & po. &
£,,) are already constructed in section 4. Here we shall construct other independent invariants
of Ky-action on S(a @ p; @ €, @ pay D £,) or equivalently from S(p; D €, D p2;. D £2,), since
a is an invariant one-dimensional space, and corresponding invariant differential operators.

An element ® € K’ is from Ky C K’ iff ®3(1) = 1 and then ®3(¢§) = & for any
& € R C Cas. Hereafter in this section ® € K. The orthogonality of ®; means that

Re(®i(&)Pi(1)) = Re(£7) £,n € Ca;. (61)
In particular, ®; (£)®; () = |£|* and
Q;(6)" = D (5)/1E (62)

For n = & from (55) we obtain ®;(§)®>(§) = D3(|E[2) = |£]2, so from (62) ®,(§) =
£ @2 (8) ! = P2(€) and

O, =10dy01. (63)
Let Q1(&,n) = Re(&n), & € Cay, n € Ca,. From (61) and (63) we get

01(@1(8), P2(1) = Re(P1(§)P2(1) = Re(P1(§)P1(7) = Re(En) = 015, n).

Thus, Q; (&, n) is invariant under the Ky-action.

From proposition 3, it follows that ®; = gl', &, = gR, &3 =10g" 01 = g¥, where
gl, g®, gV are respectively left spinor, right spinor and vector representation of the group
Ko =~ Spin(7), since t|cq; = —id. Besides, the Ko-action on Im(§7),§ € Ca;,n € Cap
equals g, so Q2(£, 1, ¢) := Re(Im(£n)¢) is invariant under Ko-action for ¢ € Cdj.

According to section 4 the Kj-action on p; is equivalent to the Kj-action on &, and
the Ky-action on py, is equivalent to the Ky-action on €,;. This equivalence is established
by the correspondence of bases e, ; <> f,; and ey o <> far . Itis also confirmed by the
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formulae [Y>(£), E1] = X»(§), ad Y1 (£) (X3(1)) = —X»(§), & € Ca and (63). Therefore the
analogue of Im(£7), & € Ca;,n € Cay in S(p; & &, D poy. & €3) Q Ca is

Z Jriers @ eiej.
i#]
Thus, after the identification p»;, =~ Caj the invariant Q, gives the invariant from
S(p,. ® & D pa D Er)

Z fk,iek,E,eZA,eiej = Z fx,iex,jezx,eiéj~
i#] i#]
Therefore, we can define the invariant differential operator:
1 1
D; = ~1 Z {fiivenjh ez} = 1 Z {{fijrenit ernes }-
i#]j i#]
Similarly, the identification &, ~ Caj gives the invariant differential operator:
1 1
Dg = ~7 Z {{fisenil fores ) = 7 Z {{fij eni} foreg, }-
i#j i#]
It is clear that equation (55) remains valid after the cyclic permutation of indices 1, 2, 3:

D3(0)P1(§) = D2(C8) Dy(n)P3(2) = D1 (n7)
& eCaq n € Ca ¢ € Caj.

(64)

Define

P&, 1,81, &) = Re(8i& - 1) &1, & € Caj.
The function P (&, n, {1, &) is invariant w.r.t. the Ky-action, since due to (64), (63) and (61):
P(D1(§), D2(n), D3(41), P3(52)) = Re(@3(51) D@1 (§) - P2(1)D3(82))
= Re(®2(518) @1 (n52) = Re(®1(515)P1(182)) = Re (61§ - 182)
=P, 1,81, 8).
Functions P (&, n, ¢1, &) and P(§, n, {2, £1) are not independent. Indeed, the corollary
15.12 in [18] gives
Re(ab - ¢) = Re(bc - a) = Re(ca - b) = Re(a - bc) = Re(b - ca) = Re(c - ab)
a, b, c e Ca.

Therefore, using the Moufang identity (46) we obtain

P&, n,¢(,0) =Re(¢ -&n-¢) =Re(¢? - &n) = —Re(|¢1*En) = —[¢|* Re(En)
= —[¢1P Q1 1) (65)

which means that for ¢ = ¢, = ¢ invariant P (&, n, ¢, ¢) is expressed through invariants of the
second order. Using the polarization of (65) w.r.t. ¢, which means the substitution { = ¢; + ¢,
we get

P&, n, 01,0+ P&, 0,0, 81) = —2(¢1, 82) 018, n).

This means the dependence of two invariants P (&, n, {1, &), P(&,n, &, ¢1) and invariants
01(&,n), (¢1, &) is of the second order. The last two invariants correspond to operators Ds
and Dg.

For constructing the invariant differential operator D9 we shall use the invariant function

P(S’ n, é‘la {2) - P(Ev 1, CZa Cl)
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Using ), ez ® e as the analogue of 1 we get the corresponding expression from
S(py. @ €1 © pos @ £2:):

Z (fzx,e,z),- fk,iek,ékeZA,Eké, — €2e5 Jrienz, fzx,éka,)

i#]
#k
= Z (err.ciz; frilrk fonee, = foree, fri€rk€onoe,)
i#]
J#k
since for i # j it holds thate;é; = —e;é; = —e;é;.
Define the corresponding invariant differential operator as
1
Dy = 3 Z (Hezneie frib A Foreeys eric}} = {{eznec, eni}s { foree,s frk}})-
i#]
J#k

Let us show that there are exactly nine independent Ky-invariants in S(p; @€, D p2 B €21).

Indeed, dim(p; @ &, D oy D ¥2,) = 8+8+7+7 = 30 and dim Ky = dim Spin(7) = 21.
Therefore, the codimension of Ky-orbits in p; @ &, D poy @ &, is at least 30 — 21 = 9 and
there should be at least nine independent Ky-invariants in S(p, @ &, & poy D £2,).

On the other hand, it is obvious that the stationary subgroup, corresponding to a point in a
general position, of the group Spin(7), acting on p»;, By, by g¥ ®g",is Spin(5). Therefore, the
dimension of general Spin(7)-orbits in p,, @ ¥,y is dim Spin(7) —dim Spin(5) = 11. The group
Spin(5) is isomorphic to Ug(2), see [18], proposition 5.1. In section 6 the six independent
invariants of the diagonal Up(2)-action on H? @ H? ~ p, @ £, were found, so general orbits
of the last action are ten dimensional, since dimg (H? @ H?) — 6 = 10. Thus, general Spin(7)-
orbits in p; @ €, D poy @ € are 11 + 10 = 21 dimensional, their codimension is 9 and there
are exactly nine functionally independent invariants of Spin(7)-action on p; @ €, @ poy. D €.

It is not known if there are any other invariants of this action, which are polynomial
in e, i, fo.i, € .as for.« and are not polynomial in Dy, ..., Dg. Such invariants should be
connected with Dy, ..., Dg by algebraic equation of a degree greater than 1. In the case of
P"(H)s, n > 3 there is the invariant Dy which does not admit the polynomial expression in
Dy, ..., Dy, but Dfo does admit such an expression. The operator D arises in commutative
relations of Dy, ..., Do.

In the next section it is found that all commutators of operators Dy, ..., Dy in the
octonionic case are polynomial in Dy, ..., Dg. Therefore it seems probable that there is no
analogue of Dy in the octonionic case.

It is easily verified that automorphisms ¢,, o acts on D7, Dg, Dg as

Ly (D7) = cos(a) D7 — sin(a) Dg Lo (Dg) = sin(a) D7 + cos(a) Dg
$a(Dy) = Dy o(D7) = D; o(Dg) = —Dg 0 (Dy) = Dy.

Similar to the previous sections, in order to get the generators of the algebra Diff (H?(Ca)s)
one can use remark 1 and make the formal substitution:

A —iA ey — ey Joi = fui €0 —> 1€ 4 Jrw = fra

This substitution produces the following substitution for the generators Dy, ..., Djo:

Dy — iD D, - —Dj D, - D, D3 — iD; Dy, — —Dy,

Ds — Ds D¢ — iDg D; — —Ds Dg — iDg Dy — —Dy. (66)

The operators Dy, . .., Dy generate the algebra Diff (H>(Ca)s).
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12. Relations in algebras Diff(P*(Ca)s) and Diff(H?(Ca)s)

Below there are all 45 commutative relations of operators Dy, ..., Dg. An example of a
calculation of such a relation is given in appendix A. All methods described in section 7 for
calculating commutative relations were used in this case. Besides, the numeration of the base
elements e, ;, fi.i, €2:..a4> fr.e DY OCtonionic units ¢;,i =0, ..., 7 is very convenient

[Do, D1] = —Ds [Do, D2] = D; [Do. D3] = 5(Dy — Dy) [Do, D4] = —2D¢
[Dg, Ds] = 2Ds [Dy, Dg] = Dy — Ds [Do, D7] = —Dg [Dy, Dg] = D
[Do, Do] =0 [Dy, D3] =—{Dy, D3} — 2D7 [Dy, D3] = {Do, Dy} + Dg + 10Dy
[D1, D4] =2D; [Dy, Ds]=0 [Dy, D¢] = Dg
[Dy, D7] = 3{Dy, Dy — D4}—Do—3{D3, Dg}— D3 —5D} — D1 — 22D, + 2Dy — 1 Ds
[Dy, Dg] = —3{D3, Ds} — 3{Dy, D¢} + 10Dg + 3 D3
[D1, Do] = 3{Ds, D7} — 3{Ds, Ds} — “53{ Do, D3} — ‘2D
[Ds. D3] =3{Dq. D>} + Dg—10D,
[D>, Dyl = —2Dy [D>, Ds]=0 [Ds, D¢l = —Dg
[Ds, D7l =—Y{Dy, D;— Dy} + Do— D3, Dg} + D3 +5D% + 2D, + BD; — YD,y + 1 Ds
(D, Ds] = 3{D1, D¢} — 3{D3, Ds} + 2 D3 — 10D
[D,, Do] = —3{Ds, D7} + 3{Ds, Ds} + “2{Dy, D3} + '€ D7, [D3, D4] =0
[Ds, Ds] = 2Ds [D3, D¢l = D7 [D3, D7] = —3{D1 + D5, D¢} + 10Dg
[D3, Ds] = ${Dy, D2} — }{Dy + Dy, Ds}—Dy— D3 — 5D5 — 22(D + Dy) — 1Dy + 2 Ds
(D3, Dol = 3{Dy4, D} — 3{De. D7} + ‘3 {Do, Dy — Dy} — 2 Dy
[D4, Ds] = —2{Dy, D¢} [Ds, D] = —{Do, D4} + —Do
[D4, D7] = 3{D\ — Dy, D4} + 3 (D, — Dy) [D4, Ds] = 3{Dy — D, D¢} — {Dy, D7}
[D4, Dg] = —9{Dy, D¢} [Ds, D] = {Dy, Ds} — 3Dy
[Ds., D71 = {D3, D¢} +{Dy, Ds}  [Ds, Ds] = {D3, Ds} — 3 D3 [Ds, Do] = 9{Dy, De}
[De. D71 = 1{Dy — D5, Dg} + 5{Ds, D4} + 3{Do, D7} — 3 D5
[De. Ds] = 1{D\ — Dy, Ds} + 5{Ds, D} — 3{Dy, Dg} + ¥ (D> — D))
[Ds, Do] = 3{Dy, D4 — Ds}
(D7, Ds] = —4{Do, {D1, D2}} + 3{Do. D3} + 3{ Do, Do} + 1{D1 — Dy, Dg} + 3{Dy, Ds}

+ 33Dy, Dy + Dy} — 2Dy — 3{D3, D7} + 5D} + 3{Dy, D4}
[D7. Do] = 1{{Do. D7}, D¢} +3{D> — Dy, {Ds. Ds}}

— 1{{Dy, D4}, Ds} +1{ Dy — Dy, D¢} —1{Dy, Ds} + 3{Ds, De}

+85(D) — Dy, Dy} + {D| — Dy, Ds} + 258D, — D)
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[Ds, Do] = —1{{Do, D¢}, Ds} — +{D3, {D4, Ds}} + 1{{Dy, D7}, Ds} + 3{ D3, D¢}
+12{D3, Ds} + £(Dy — Dy, Dg} + 3 {D3, Dy} + 3{Dy, D7} — 27 D5

Using these relations it is not difficult to verify that the operator D* = Dg + D+ D) +
Dy + Ds lies in the centre of the algebra Diff (P" (H)s) in accordance with section 4.

Using substitution (66) one can obtain from the above relations the commutative relations
for the algebra Diff (H>(Ca)s).

13. Connection of algebras Diff(Ms) with the two-body problem

In [5] an expression of the quantum two-body Hamiltonian with a central potential V (p) on an
arbitrary two-point homogeneous space M through radial differential operators and generators
of an isometry group was found. Using the notation of the present paper we can write these
expressions in the following way:

6
H = Ly+{Ly. Do} +ayDj + Y _a;Di + V(p)
i=1
for M = P"(H) and M = P?(Ca);
3
T 2 2 2
H =Ly +{Ly. Do} +aoD} + Y _ a; D; + asDj + asD3 + a{ Dy, Ds} +V (p)
i=1
for M = P"(C) and
3
H = Ly+{Ly. Do} +ayDg + Y _a;D; + V(p)
i=1

for M =P"(R),S",n > 3 and
. 1
H = Ly+{Ly, Do} +agD} +a; D} + a, D3 + Ea3{Dl, Dy} + V(p),

for M = P?(R), S2.

Here p is the distance between particles, L;, i = 1, 2is some ordinary differential operator
of the ith order w.r.t. p, @y = const,a;,i = 1, ..., 6 are some functions of p and masses of
particles. The analogous expressions for noncompact spaces can be obtained by substitutions
D; — D; from above.

The main difference of these expressions from the Euclidean case is the presence of
noncommutative operators with coefficients depending on p. This difference makes the two-
body problem on M quite difficult. However, every common eigenfunction of generators
D; gives an isolated ordinary differential equation for a radial part of an eigenfunction for
H. Using this approach some exact spectral series for the two-body problem on S” were
found for several potentials in [15]. For other two-point compact homogeneous spaces similar
calculations should be more difficult.

Appendix A. Calculation of some commutative relations

In this appendix we shall illustrate the main ideas of calculating some commutative relations.
Let us start from commutative relations (24) from section 7. We shall obtain some relations
requiring the minimal calculations.
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Let operators Dy, ..., Do be defined as in section 6. First let us consider the commutator
[Dy, D4]. Tt is not difficult to verify the following equalities for elements A, B, C of an
arbitrary associative algebra:

[A, {B,C}] ={[A, B],C} +{B,[A, Cl} (A.1)
{{A, B}, C} —{A,{B,C}} =[B,[A,C]] (A2)
{{A, B}, C} =2{B,C}A+{[A, B],C}+{[A,C], B} +[B, [A, C]]. (A.3)
In particular, when C = B, from (A.1) we have [A, B*] = {[A, B], B}. This implies
[D1, D4] = {[D1, T12], Y12} +{[ D1, Q12], Qi12} +{[ D1, O12], Op2}.
Using (12) and (A.1) again, we obtain
[Dy, T2l =1 [Dy, Q2] =0 [Dy, ©12] = L.
Thus
[D1, Da] = {1, Yio} + {{h, Qi2} + {03, O} = 2D5. (A4)

Using the permutation of coordinates z; and z, (or equivalently the automorphism o o ¢,
see section 6), we obtain from (A.4):

[D,, D4] = —2D5.
Suppose now we already know the expressions for commutators
[Do, D11, [Do, D31, [Do, D71, [D1, D21, [D1, D4, [D1, Dsl, [D1, D¢l, [D1, D7l
[D1, Dgl, [D2, Dgl, [D3, D4l, [ D3, D¢l, [Ds, Ds], [Ds, D¢l, [ D4, Dg].
Then from the Jacobi identity and (A.1) we have
0 = [Dy, [Ds, Dyl + [ Dy, [Dy1, D]l +[Ds, [ D4, D111 = [ Dy, 3{D> — Dy, De} + { Dy, D7}]
+[Dy, n(n — 1)Dg — 5{D3, Ds} + 3 D3 — 3{Dy, Dg}] — 2[Ds, D7]
= D1, D2l, D¢} — 3{Dy — D3, [Dy, Del} + {[D1, Dol, D7} + {Dy, [ D1, D71}
+n(n — 1)[ Dy, Dg] — 3{{ D4, D3], Ds} — 3{Ds, [ Dy, Ds]} + 3Dy, Ds]
— 3(D1. [Ds, Dgl} = 3{IDs, D11, D6} — 2[Ds, D7] = —3{{D3, Do}, De}
—{D4, Dg} + 3{D; — Dy, Dg} +{D3, D7} + {Do, n(n — 1) Dy — 3{D3, D¢}
— 3{D1, D4} + 3(D1 — D2) + Do + Dig} — n(n — 1){Dy, D4} + 3n(n — 1) Dy
+{D3. {Ds, Do}} + 3{D1. {Do, Da}} = 3(D1, Do} +{D7, De} — 2[Ds, D7]
= 3{Dy — Dy, Dg} +{Ds3, D7} + 3{Do, D1 — Dy} + {Dy, Dy + D10}
+3n(n — 1)Dy — 3{Dy, D} — 2[Ds, D7].
In the last equality we took into account the formulae
{{De, Do}, D3} — {De, {Do, D3}} + {{Do, D¢}, D3} — {Do, {Ds, D3}} = [Do, [Ds, D]l
+[Dg. [Do. D3]] = —[Dy, D7] — 3[Ds. Dy — D1] = Dg + 3(—Dg — Dg) =0
{{Do, Ds}, D1} — {Do, {D4, D1}} = [D4, [Do, D111 = [D4, D3] =0

which are consequences of (A.2).
Thus we get

[D7, Ds] = 3{D\ — Dy, Ds} — 3{D3, D7} + &{Dy, D1 + D2} — 3{Dy, Dy + D1y}
—32n(n — 1)Dy.
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Now let us demonstrate the calculation modulo (U (g)¥y)%°. Let Dy, ..., Ds are generators
of Diff(S),n > 3, g = so(n + 1), & = so(n — 1), Ko = SO(n — 1). Then from (A.1) we
obtain

n+l
[D1, D3] = =8 > ({{(Wii, [Wix, Wl}, Wi + (Wor, (Wi, Wik, W l}})
k1=3
n+l
=43 (Wi, Wi}, W} + 8 (W, {Wie, Wio})
k=3
n+l n+l
=4 ) (W, Wi, W) +4 ) (Wi, (Wi, Wio}). (A5)
k1=3 k=3
k£l

From formula (A.3) and commutative relations (12) one obtains

n+l n+l

Z {Yu, i}, Yo} = Z C{W1x, Yo }Wiy + {[Wrr, Wik, Yo} + {[ Wi, Worl, Wik}
k=3 k=3

kAl kAl
n+l
+[ Uy, [V, W ]])=Z —1{\1: N7 }+1{xp N7 }+l[w Wy, ] mod
1k > kis ¥2I —kl_g ) 11, ¥2I ) 2k s 1k ) 1ks X2k
j o
U@t =L 3y, = DD,
0 - 4 12 — 4 12
k=3
k£l

_ n—1)m-2) Do.
8
Formula (A.2) gives

n+l n+l n+l
D W AW Wil = (Wi, Wid, Wi} — [y, [Wi, Wial]) =2 {Z i, \1112}
k=3 k=3 k=3

n+l n+l

1 1 1 n—1
- = Wi, Ul = —={Dy, D - Vi, = ——{Dg, D;} — Dy.
ZZ[ 1> W] 71Do 1}+4Z 12 7 Do D1} 0
k=3 k=3
Finally, from (A.5) we obtain
n—1 n—1n-2) n—1)m-73)
[D1, D3] = —{Do, D1} — 5 Do + > Do = —{Do, D1} + fl)o.

Calculations of [ Dy, D3] for algebras Diff (P" (H)s) and Diff (P"(C)g) are analogous, but
much longer.

Let us demonstrate calculations in the octonionic case by one example. Below indices
i, j vary from 0 to 7. Let Dy, ..., Dy be the generators of Diff(P?(Ca)s), g = fa, 8 =
spin(7), Ko = Spin(7). Then from (A.1) and proposition 5 we obtain

1
[D1, D3] = 3 Z({{[ek,i» ewjlenit, fajt+len . lenis lenis . fo ;11D
L]
1

1 1
= g ;{{%CZ,Z’,',E," ex,i}v fA,j} _Z Xi:{ex,i, {ex,n A}} — 4_1 ;{ex,p {6)\,1', ezx,eizf}}-
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Formulae (A.3), (60), (47) and proposition 5 imply

- Z{{xcze, 2 €l frj) = Z(z{ek i» Fui}Cazz, +{[%Coz 20 €14, fij)
l#J
+({[xCag, 2, fk,j]’ eA,i} +lenis [xCazz;s frj1D)

1 B 1
= Z <_R{ad Y2(xCaz 6 lcay@i)s fr,j + R{ad Yi(%Cazz,lcae))s €}

i#]
1 1 0
16 [e)» i ad Yl (%CZ ;,¢; |Ca|e])] + E{e)».i’ fA,j}fZA,eiéj mOd(U(g)EO)
I . I |
= Z _Z{ad Y2(e;), foj} — g{ad Yi(e), eni} — g[ex,i, ad Yy (e;)]
i)

1
+Z({f2,\,eiéf, lenis fuj}l = [fareie;» {enis fx,j}]))
1
Z ( {erj> foj} {fx,i, e} — Z[ek,ia fA,i]) + Dy
i#]j

1
2 Z({[fzx,eiéj, evils fujt +ewis e fij1h)
i#]

1 1 1 1
=Dg+ E Z{ex,js foj)+ gl\ + g{el,&‘é,"e," faj)— g{ex,i, Jieizje;}
i#j

1
= Dg + Z( lexj, frj} {ex,ejz»le” il —g{eu, f)\,i}> +7A = Dg +7Dy.
i#]

Similarly, from (A.2) and proposition 5 we get

1 1
-3 Z{{A, enibenil =7 Z({A, {erirenil) +lewis [A, el

1 1
=—§{A,Ze§,i} Z[em,fxz= {Do,Dl}——Do

Also

1 1
~1 g{{ezx,qéﬂ eril,enjl = ~7 ;({62)\,@@7 {evir el +lenis leanez;s €11

1 1 7x8 7
=3 Z[ex,i, fraz el =—3 Z[ex,i, Sril =57 =7Do

2
i#j i#j
since € ez is antisymmetric and {e, ;, e, ;} is symmetric w.r.t. i, j.
Thus
[Dy. D3] = Dg+ (7 — 5 + 3) Do — 3{Do. D1} = Dg — 5{Dy, D1} + 10D.
Appendix B.

In this appendix we will prove the following theorem:
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Theorem 3. Let M be a two-point G-homogeneous Riemannian space, where G is the identity
component of the isometry group for M. For every smooth vector field v on M define a function
fv on Ms by the following formula:

fr(y) =8 (x),§) = (v(x), §)

where x € M, g(-,-) = (-, ) is the Riemannian metric on M, & € T\M,(£,&) =1,y =
(x, &) € Ms. Let Dy € Diff(Ms) be the differential operator constructed in section 4 (for the
noncompact case, see remark 1). For every element X € g we denote by X the corresponding
Killing vector field on M. Then the condition Dy f,, = 0 on Ms is equivalent to the equality
v = X for some X € g. In other words, the kernel of the operator Dy consists of functions
fx, where X runs over the algebra g.

This theorem for the case M = H"(R) was formulated and proved in [4] by the explicit
coordinate calculations. Here we will prove it in the general case in a more conceptual way.

Proof. Let K be the stationary subgroup corresponding to the point xo € M, ey = %f\(xo) €
T\ M, (eo, eg) = 1, where A and R are from proposition 1. The space Ms is the G-orbit Gyy,
where yy = (x, eg) € Ms.

The action of Dy on f, can be written in the following way [3] (theorem 4.3):

d
(Do fu)(gyo) = —|  fu(gexp(tA)yo) g €G.

dr|,_
Therefore,
d
(Do f1)(gy0) = a (v(gexp(tA)xo), g exp(t A)eo)
=0
d . d
= — v(gexp(tA)g™ gxo), gexp(tA) —|  exp(uA)xo
dr - diel,—o
d d
= — v(exp(tAd,A)gxg), — exp(rAd, A) exp(nAdg A)gxo
dr,_ du 1=0
d d
= — v(exp(tAd,A)gxo), — exp(uAd, A) exp(tAd, A)gxp ).
dt t=0 dl'l“ n=0

Due to the transitivity of G-action on Mg the point y := (x,e) := (gxo, KZi\gK | ng) can be
considered as arbitrary. Denote W = Ad,A. Then

(v(exp(tW)x), W(exp(tW)x)) = £52 (v(x), W (x))

d
(Do fo)(y) = al_,

where £y is the Lie derivative along the vector field X. The vector field W is Killing, so
£78 =0and
Dofy = gEyv, W) +2(, £y W) = 2(Eyv, W) = —2(E,W, W)

= 3EDW, W) — 3£,@W, W) = 5(£,2)(W, W) (B.1)

due to Z(W(x), W(x)) = 8(gA(x0), gA(x0)) = 8(A(x0), Axp)) = R* and £xY = [X, Y],
where [X, Y], is the commutator of vector fields X and Y. The element W € T, M is arbitrary,
therefore from (B.1) we see that the condition D f,, = 0 is equivalent to the equality £,2 = 0,
which means that v is a Killing vector field and has the form v = X for some X € g if and
only if Dy f, = 0. ]
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