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Abstract
Let G be the identity component of the isometry group for an arbitrary
curved two-point homogeneous space M. We consider algebras of G-invariant
differential operators on bundles of unit spheres over M. The generators of this
algebra and the corresponding relations for them are found. The connection of
these generators with the two-body problem on two-point homogeneous spaces
is discussed.
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Mathematics Subject Classification: 16S32, 43A85, 22F30, 70F05

1. Introduction

The property of a differential operator on a smooth manifold M to be invariant with respect to
an action of some group G (especially a Lie group) on M plays a great role in mathematical
physics since it helps select physically significant operators. The algebra Diff(M) of all
G-invariant differential operators with complex or real coefficients on M gives the material
for constructing G-invariant physical theories on M. Properties of such a theory are in close
connection with properties of the algebra Diff(M).

A homogeneous smooth manifold M of the Lie group G is called commutative space, if
the algebra Diff(M) is commutative. The well-known example of a commutative space is the
symmetric space of rank l. Recall that the rank of a symmetric space is the dimension of its
maximal flat completely geodesic submanifold. The commutative algebra Diff(M) for this
space is generated by l independent commutative generators [1]. Particularly, for symmetric
spaces of rank 1 (which are the same as two-point homogeneous spaces) the algebra Diff(M)

is generated by the Laplace–Beltrami operator. Also, the class of commutative spaces contains
weakly symmetric spaces [2].

Only some sporadic examples of noncommutative algebras Diff(M) are known (see, for
example, ch 2 [3]). One of these examples is the noncommutative algebra Diff(M1) for
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M1 = O0(1, n)/SO(n − 1) studied in [4], where O0(1, n) is the identity component for the
group O(1, n). In that paper the space M1 was interpreted as the total space for the bundles
of unit spheres over the hyperbolic space Hn(R). Denote the total space of the bundle of unit
spheres over a Riemannian space M by MS.

The space Hn(R) is a representative of the class of two-point homogeneous Riemannian
spaces (TPHRS) for which any pair of points that can be transformed by means of appropriate
isometry to any other pair of points with the same distance between them. Equivalently,
these spaces are characterized by the property that the natural action of the isometry group on
the bundle of unit spheres over them is transitive. Thus the natural problem arises: describe
the algebras Diff(MS) for the bundle of unit spheres over all TPHRS M.

From the point of view of the two-body problem in classical and quantum mechanics,
TPHRS are characterized by the property that the distance between particles is the only
invariant of the isometry group G in the configuration space. The space MS is isomorphic to
an orbit in general position for the symmetry group G of the two-body problem on the TPHRS
M acting in the configuration space of this problem. Due to the two-point homogeneity of M
the codimension of these orbits is one. Thus, for the two-body problem in TPHRS there is the
degree of freedom corresponding to the distance between particles; other degrees of freedom
correspond to the homogeneous manifold and can be described in terms of the symmetry
group G.

In [5] the polynomial expression for the Hamiltonian Ĥ of the quantum mechanical two-
body problem on an arbitrary TPHRS M was found through the radial differential operator
and elements of Diff(MS). In the present paper the generators of algebras Diff(MS) and the
corresponding relations for them are found for all curved two-point homogeneous spaces M.
Some properties of these generators are discussed.

This paper is organized as follows. In section 2, we give the necessary information on
invariant differential operators on homogeneous spaces. We recall the classification of TPHRS
in section 3. In section 4, we specify the construction of invariant differential operators for
the space MS, where M is a two-point homogeneous Riemannian space. Some generators are
found common for all Diff(MS). In section 5, the model of the quaternion projective space
Pn(H) is described. In section 6, the generators for the algebra Diff(Pn(H)S) are calculated
and by formal correspondence the analogous generators of the algebra Diff(Hn(H)S) are
obtained. The corresponding relations for these algebras are found in section 7. In section 8
we consider from the same point of view algebras Diff(Pn(C)S), Diff(Hn(C)S) and in
section 9 the algebras Diff(Pn(R)S), Diff

(
Sn

S

)
. In section 10, there is a description of

the Cayley plane P2(Ca) through the exceptional Jordan algebra h3(Ca). In section 11,
the generators for the algebra Diff(P2(Ca)S) are calculated and by formal correspondence the
analogous generators of the algebra Diff(H2(Ca)S) are obtained. The corresponding relations
for these algebras are found in section 12.

The connection of constructed generators with the two-body problem on two-point
homogeneous spaces is discussed in section 13.

In appendix A we describe the technique for calculating the commutative relations for
algebras of differential operators under consideration and in appendix B one interesting fact
for an arbitrary TPHRS is proved.

2. Invariant differential operators on homogeneous spaces

Let G be a Lie group, M be a Riemannian G-homogeneous left space, x0 ∈ M,K ⊂ G be the
stationary subgroup of the point x0 ∈ M and k ⊂ g ≡ TeG be the corresponding Lie algebras.
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Choose a subspace p ⊂ g such that g = p ⊕ k (a direct sum of linear spaces). The space p can
be identified with the tangent space Tx0M .

The stationary subgroup K is compact, since it is also the subgroup of the group SO(n).
By averaging on the group K we can define a AdK -invariant scalar product 〈· , ·〉 on g and
choose the subspace p orthogonal to k with respect to this product [3, 6]. In this case we have
the inclusion AdK(p) ⊂ p, i.e. the space M is reductive.

Identify the space M with the factor space of left conjugate classes of the group G with
respect to the subgroup K. Let π : G → G/K be the natural projection.

Let S(V ) be a graded symmetric algebra over a finite-dimensional complex space V , i.e.
a free commutative algebra over the field C, generated by elements of any basis of V . The
adjoint action of the group G on g can be naturally extended to the action of G on the algebra
S(g) according to the formula:

Adq : Y1 · . . . · Yi → Adq(Y1) · . . . · Adq(Yi), Y1, . . . , Yi ∈ g.

Denote by gK the set of all Ad-invariants in S(g).
The main result of the invariant differential operators theory is the existence of the one to

one correspondence between the algebra Diff(M) and the set pK of all AdK -invariants in S(p)

[3]. For our purpose the next version [2] of this result is more convenient. Let U(g) be the
universal enveloping algebra with the standard filtration for the Lie algebra g and U(g)K be
its subalgebra, consisting of all AdK -invariant elements in U(g). Let µ be the linear mapping
of S(p) into U(g), according to the formula

µ(Y1 · . . . · Yp) = 1

p!

∑
σ∈Sp

Yσ(1) · . . . · Yσ(p)

where on the left-hand side the element Y1 · . . . · Yp is supposed to be in S(p) and on the
right-hand side it is supposed to be in U(g). Here Sp is the permutation group of p elements.
Obviously, µ is injective.

Let U(g)k be the left ideal in U(g) generated by k and (U(g)k)K be the set of all AdK -
invariant elements in U(g)k. The set (U(g)k)K is a two-sided ideal in U(g)K since for
elements f ∈ k and g ∈ U(g)K we have fg = adf g + gf = gf . Also µ(pK) ⊂ U(g)K ,
because M is reductive. Hence we can define the factor algebra U(g)K/(U(g)k)K . Let
η : U(g)K → U(g)K/(U(g)k)K be the canonical projection.

Theorem 1 ([2]). The algebras Diff(M) and U(g)K/(U(g)k)K are isomorphic.

Every element of U(g)K/(U(g)k)K has the unique representative from pK or equivalently
from µ(pK). We can get the relations in Diff(M) operating in U(g)K modulo (U(g)k)K .
This approach leads to simpler calculations than the operations through local coordinates on
M (like in [4]) that gives quite cumbersome calculations even in the relatively simple case of
M = Hn(R)S.

Below we are interested in the representation of the associative algebra Diff(M) by its
generators and corresponding relations. Let {gi} be a set of generators of the commutative
subalgebra pK ⊂ S(p). Not losing generality we can suppose that all gi are homogeneous
elements w.r.t. the grading of S(p). Then the elements η ◦ µ(gi) generate the algebra Diff(M).

Relations for the elements η ◦ µ(gi) are of two types. The first type consists of
relations induced by relations in U(g). Due to the universality of U(g) all these relations
are commutative ones, induced by the Lie operation in g. They are reduced to commutative
relations of the simplest form: [D1,D2] = D̃, where the operators D1,D2 ∈ Diff(M) have
degrees m1 and m2 respectively and the degree of D̃ ∈ Diff(M) is less than or equal to
m1 + m2 − 1.
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Suppose now that there is a relation in U(g) of the form

P(η ◦ µ(g1), . . . , η ◦ µ(gk)) = 0

or equivalently

P(µ(g1), . . . , µ(gk)) = D̃ (1)

where P is a polynomial and D̃ ∈ (U(g)k)K . Using the commutative relations for
µ(gi), i = 1, . . . , k we can reduce the polynomial P to the polynomial P1, symmetric w.r.t. all
permutations of its arguments, and equation (1) becomes

P1(µ(g1), . . . , µ(gk)) = D∗ (2)

D∗ ∈ (U(g)k)K . After this reduction relation (2) may be trivial: P1 = 0,D∗ = 0. It means
that (1) is the commutative relation. Suppose that relation (2) is nontrivial. Consider the sum
P2(t1, . . . , tk) of monomials with the highest total degree from polynomial P1(t1, . . . , tk) with
commutative variables t1, . . . , tk . Due to the symmetry of P1 the polynomial P2(t1, . . . , tk)

is nontrivial. On the other hand from (2) we obtain that P2(g1, . . . , gk) = 0 due to the
expansion g = p ⊕ k. Thus every relation in the algebra U(g)K/(U(g)k)K w.r.t. its generators
η ◦ µ(g1), . . . , η ◦ µ(gk) modulo commutative relations is in one to one correspondence with
the relations for homogeneous generators g1, . . . , gk of the commutative algebra pK . We call
such relations the relations of the second type.

The filtration of the algebra U(g) induces the filtration of the algebra Diff(M) which
coincides with the natural filtration of Diff(M) as the algebra of differential operators.

For simplicity throughout the whole paper we consider invariance of differential operators
only w.r.t. the identity component of a whole isometry group.

3. Two-point homogeneous Riemannian spaces

The classification of two-point homogeneous Riemannian spaces can be found in [7, 8] (see
also [9–11]), and is as follows:

1. the Euclidean space En;
2. the sphere Sn;
3. the real projective space Pn(R);
4. the complex projective space Pn(C);
5. the quaternion projective space Pn(H);
6. the Cayley projective plane P2(Ca);
7. the real hyperbolic space (Lobachevski space) Hn(R);
8. the complex hyperbolic space Hn(C);
9. the quaternion hyperbolic space Hn(H);

10. the Cayley hyperbolic plane H2(Ca).

The isometry groups for all these spaces except Cayley planes are classical and for the Cayley
planes they are two real forms of the complex special simple group F4.

For the Lie algebra g of the isometry group of the compact two-point homogeneous
space M there is the following general expansion [5, 12, 13], which is the specification of the
expansion g = p ⊕ k from section 2.

Proposition 1. The algebra g admits the following expansion into the direct sum of subspaces:

g = a ⊕ k0 ⊕ kλ ⊕ k2λ ⊕ pλ ⊕ p2λ (3)

where dim a = 1, λ is a nontrivial linear form on the space a, dim kλ = dim pλ = q1,
dim k2λ = dim p2λ = q2, p = a⊕pλ ⊕p2λ, k = k0 ⊕ kλ ⊕ k2λ; q1, q2 ∈ {0}∪N, the subalgebra
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a is the maximal commutative subalgebra in the subspace p. Here k is a stationary subalgebra,
corresponding to some point x0 ∈ M . All summands in (3) are adk0 -invariant; in particular
k0 is a subalgebra of k.

Identify the space p with the space Tx0M . Under this identification the restriction of
the Killing form for the algebra g onto the space p and the scalar product on Tx0M are
proportional. In particular, the decomposition g = p ⊕ k is uniquely determined by the point
x0. Let 〈· , ·〉 be a scalar product on the algebra g such that it is proportional to the Killing
form and its restriction onto the subspace p∼= Tx0M coincides with the Riemannian metric g

on Tx0M . The spaces a, k0, kλ, pλ, k2λ, p2λ are pairwise orthogonal.
Besides, the following inclusions are valid:

[a, pλ] ⊂ kλ [a, kλ] ⊂ pλ [a, p2λ] ⊂ k2λ [a, k2λ] ⊂ p2λ

[a, k0] = 0 [kλ, pλ] ⊂ p2λ ⊕ a [kλ, kλ] ⊂ k2λ ⊕ k0

[pλ, pλ] ⊂ k2λ ⊕ k0 [k2λ, k2λ] ⊂ k0 [p2λ, p2λ] ⊂ k0 [k2λ, p2λ] ⊂ a

[kλ, k2λ] ⊂ kλ [kλ, p2λ] ⊂ pλ [pλ, k2λ] ⊂ pλ [pλ, p2λ] ⊂ kλ.

(4)

Moreover, for any basis eλ,i , i = 1, . . . , q1 in the space pλ and any basis e2λ,i , i = 1, . . . , q2

in the space p2λ there are the basis fλ,i , i = 1, . . . , q1 in the space kλ and the basis
f2λ,j , j = 1, . . . , q2 in the space k2λ such that

[�, eλ,i] = − 1
2fλ,i [�, fλ,i] = 1

2eλ,i [eλ,i , fλ,i] = − 1
2�

〈eλ,i , eλ,j 〉 = 〈fλ,i , fλ,j 〉 = δijR
2 i, j = 1, . . . , q1

(5)
[�, e2λ,i] = −f2λ,i [�, f2λ,i] = e2λ,i [e2λ,i , f2λ,i] = −�

〈e2λ,i , e2λ,j 〉 = 〈f2λ,i , f2λ,j 〉 = δijR
2 i, j = 1, . . . , q2 〈�,�〉 = R2

where the vector � ∈ a satisfies the conditions 〈�,�〉 = R2, |λ(�)| = 1
2 . Here the positive

constant R is connected with the maximal sectional curvature �m of the space M by the formula
�m = R−2.

Nonnegative integers q1 and q2 are said to be multiplicities of the space M. They
characterize M uniquely up to the exchange Sn ↔ Pn(R). For the spaces Sn and Pn(R)

we have q1 = 0, q2 = n − 1; for the space Pn(C) : q1 = 2n − 2, q2 = 1; for the space
Pn(H) : q1 = 4n − 4, q2 = 3 and for the space P2(Ca) : q1 = 8, q2 = 7. Conversely, for the
spaces Sn and Pn(R) we could reckon that q1 = n − 1, q2 = 0. Our choice corresponds to the
isometries P1(C)∼= S2, P1(H)∼= S4.

Remark 1. Noncompact two-point homogeneous spaces of types 7, 8, 9, 10 are analogous to
the compact two-point homogeneous spaces of types 2, 4, 5, 6, respectively. In particular, it
means that Lie algebras g of symmetry groups of analogous spaces are different real forms of
a simple complex Lie algebra. The transition from one such real form to another can be done
by multiplying the subspace p from the decomposition g = k ⊕ p by the imaginary unit i (or
by −i).

The information concerning the representation theory of symmetry groups of two-point
homogeneous spaces can be found in [14].

4. Invariant differential operators on MS

Here we shall specify the construction from section 2 for the space MS, where M is a two-point
homogeneous compact Riemannian space, using proposition 1.
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Let G be the identity component of the isometry group for M and K be its stationary
subgroup, corresponding to the point x0 ∈ M . The group G naturally acts on the space MS

and this action is transitive [10] (lemma 8.12.1). In particular K acts transitively on the unit
sphere Sx0 ⊂ Tx0M . Identify the space p from proposition 1 with the space Tx0M . After this
identification the action of K on Tx0M becomes the adjoint action AdK on p. Let K0 be the
subgroup of K, corresponding to the subalgebra k0 ⊂ k. Due to relations (4) and (5) K0 is the
stationary subgroup of the group G, corresponding to the point1 y := (x0,�

′) ∈ MS, where
�′ := 1

R
�.

Let p̃ := a ⊕ pλ ⊕ p2λ ⊕ kλ ⊕ k2λ. Since [k0, p̃] ⊂ p̃ the expansion g = p̃ ⊕ k0 is
reductive. One has TyMS = Tx0M ⊕ T�′Sx0 . Due to proposition 1 we obtain �′⊥(pλ ⊕ p2λ)

and [fλ,i , �
′] = −(2R)−1eλ,i , i = 1, . . . , q1, [f2λ,j ,�

′] = −R−1e2λ,j , j = 1, . . . , q2.
Therefore, the space kλ ⊕ k2λ is identified through the K-action on Tx0M with the space
T�′Sx0 and the K0-action on the space TyMS � p̃ = a ⊕ pλ ⊕ p2λ ⊕ kλ ⊕ k2λ is again adjoint.

From proposition 1 we see that AdK0 conserves all summands in the last expansion. On
the other hand, the K0-action on T�′Sx0 is the differential of K0-action on (�′)⊥ ⊂ Tx0M .
Since the last action is linear we obtain that the AdK0 -action on pλ is equivalent to its action
on kλ and the AdK0 -action on p2λ is equivalent to its action on k2λ. Let χλ : kλ → pλ,

χ2λ : k2λ → p2λ be isomorphisms of linear spaces such that AdK0

∣∣
pλ

◦ χλ = χλ ◦ AdK0

∣∣
kλ

and

AdK0

∣∣
p2λ

◦ χ2λ = χ2λ ◦ AdK0

∣∣
k2λ

.
After the substitution p → p̃, k → k0 we can apply the construction from section 2 for

calculating generators and relations for the algebra Diff(MS). Let gi be independent invariants
of the AdK0 -action on p̃. Then elements η ◦ µ(gi) generate the algebra Diff(MS).

There are some obvious invariants of the AdK0 -action on p̃. First of all it is � ∈ a, since
[k0, a] = 0. Secondly, the AdK0 -action is isometric w.r.t. the Killing form which is proportional
to the scalar product 〈· , ·〉, so the AdK0 -action conserves the restrictions of 〈· , ·〉 onto spaces
pλ, p2λ, kλ, k2λ. Thirdly, the AdK0 -action conserves functions 〈χλX1, Y1〉, X1 ∈ kλ, Y1 ∈ pλ

and 〈χ2λX2, Y2〉, X2 ∈ k2λ, Y2 ∈ p2λ.
Let us define χλ and χ2λ by

χλX = 2[�,X] X ∈ kλ χ2λY = [�,Y ] Y ∈ k2λ. (6)

It is obvious that χλ : kλ �→ pλ and χ2λ : k2λ �→ p2λ are bijections. For any k ∈ K0 it holds
that Adk� = � since [k0, a] = 0, therefore from (6) we obtain: Adk ◦ χλX = 2[�, AdkX] =
χλ ◦ AdkX,X ∈ kλ and Adk ◦ χ2λY = [�, AdkY ] = χ2λ ◦ AdkY, Y ∈ k2λ. It is clear that
χλfλ,i = eλ,i , i = 1, . . . , q1 and χ2λf2λ,j = e2λ,j , j = 1, . . . , q2.

The bases {
1

R
eλ,i

}q1

i=1

{
1

R
fλ,i

}q1

i=1

{
1

R
e2λ,j

}q2

j=1

{
1

R
f2λ,j

}q2

j=1

respectively in spaces pλ, kλ, p2λ, k2λ are orthonormal, so one has the following generators of
Diff(MS):

D0 = η(�) D1 = η

(
q1∑

i=1

e2
λ,i

)
D2 = η

(
q1∑

i=1

f 2
λ,i

)
D3 = η

(
1

2

q1∑
i=1

{eλ,i , fλ,i}
)

D4 = η


 q2∑

j=1

e2
2λ,j


 D5 = η


 q2∑

j=1

f 2
2λ,j


 D6 = η


1

2

q2∑
j=1

{e2λ,j , f2λ,j }



(7)

1 By (α, . . . , ω) we denote the set of objects α, . . . , ω.
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where {·, ·} means anticommutator. For brevity we shall omit the symbol η below. From (5)
one easily obtains

[D0,D1] = −D3 [D0,D2] = D3 [D0,D3] = 1
2 (D1 − D2)

[D0,D4] = −2D6 [D0,D5] = 2D6 [D0,D6] = D4 − D5.

In order to find the full system of invariants and relations in Diff(MS) we need more
detailed information about the AdK0 -action on p̃ and commutators in g. This information will
be extracted in the following sections from the models of two-point homogeneous compact
Riemannian spaces.

It is easily seen that every automorphism of Lie algebra g, conserving its subalgebra k0,
generates an automorphism of Diff(MS). From relations (4) one obtains that the map σ : g →
g, σ |k = id, σ |p = −id is the automorphism of g. It generates the automorphism of Diff(MS):
D0 → −D0,D1 → D1,D2 → D2,D3 → −D3,D4 → D4,D5 → D5,D6 → −D6. We
shall denote it by the same symbol σ .

Another obvious automorphism is the one parametric group ζα of internal automorphisms,
generated by the ad�-action. From (5) one obtains

ζα(�) = � ζα(eλ,i) = cos(α/2)eλ,i − sin(α/2)fλ,i

ζα(fλ,i) = sin(α/2)eλ,i + cos(α/2)fλ,i i = 1, . . . , q1

ζα(e2λ,j ) = cos(α)e2λ,j − sin(α)f2λ,j

ζα(f2λ,i) = sin(α)e2λ,j + cos(α)f2λ,j j = 1, . . . , q2.

Therefore,

ζα(D0) = D0 ζα(D1) = cos2(α/2)D1 + sin2(α/2)D2 − sin(α)D3

ζα(D2) = sin2(α/2)D1 + cos2(α/2)D2 + sin αD3

ζα(D3) = 1
2 sin(α)(D1 − D2) + cos(α)D3

ζα(D4) = cos2(α)D4 + sin2(α)D5 − sin(2α)D6

ζα(D5) = sin2(α)D4 + cos2(α)D5 + sin(2α)D6

ζα(D6) = 1
2 sin(2α)(D4 − D5) + cos(2α)D6.

In particular ζπ (D1) = D2, ζπ (D2) = D1, ζπ (D3) = −D3, ζπ (Di) = Di, i = 0, 4, 5, 6.
Proposition 1 implies that the base

1

R
�

1

R
eλ,i

1

R
fλ,i

1

R
e2λ,j

1

R
f2λ,j i = 1, . . . , q1 j = 1, . . . , q2

in the space p̃ is orthonormal, therefore the operator D∗ = D2
0 + D1 + D2 + D4 + D5

corresponds to the Casimir operator in U(g) [17] (lecture 18). It means that D∗ lies in the
centre of the algebra Diff(MS).

Let π1 : MS → M be the canonical projection and π̃1 is the map of a function f on M
to the function f ◦ π1 on MS. Due to the identification p � Tx0M it is clear that the operator(
D2

0 + D1 + D2
) ◦ π̃1 is the Laplace–Beltrami operator on M.

5. The model for the space Pn(H)

Let H be the quaternion algebra over the field R with the base 1, i, j, k, where
ij = −ji = k, jk = −kj = i, ki = −ik = j. The conjugation acts as follows:
x + yi + zj + tk = x − yi − zj − tk, x, y, z, t ∈ R.

Let Hn+1 be the right quaternion space and (z1, . . . , zn+1) be coordinates on it. Let Pn(H)

be a factor space of the space Hn+1\{0} with respect to the right action of the multiplicative
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group H∗ = H\{0}. The set (z1 : . . . : zn+1) up to multiplication from the right by an
arbitrary element from the group H∗ is the set of homogeneous coordinates for the element2

π(z) on the space Pn(H), where π : Hn+1\{0} → Pn(H) is the canonical projection. Let
〈x, y〉 := ∑n+1

i=1 x̄iyi, x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) ∈ Hn+1 be the standard scalar
product in the space Hn+1. Let z ∈ Hn+1\{0}, ξi ∈ TzH

n+1, ζi = π∗ξi ∈ Tπ(z)(Pn(H)), i = 1, 2.
A metric on the space Pn(H)

g̃|z(ζ1, ζ2) = (〈ξ1, ξ2〉〈z, z〉 − 〈ξ1, z〉〈z, ξ2〉)/〈z, z〉2 (8)

is the analogue for the metric with a constant sectional curvature on the space Pn(R) and the
metric with a constant holomorphic sectional curvature on the space Pn(C). The real part of
the metric (8) is a Riemannian metric on the space Pn(H):

g = 4R2 Re g̃. (9)

The normalizing factor in (9) is chosen due to the following reasons. The space P1(H)

with this metric is the sphere S4 with the standard metric of the constant sectional curvature
R−2. To see this we can consider a homeomorphism ν : P1(H) → H̄ ∼= S4, ν(z1, z2) =
z1(z2)

−1 = z ∈ H, where H is the quaternion space completed with the point at infinity. For
n = 1 formula (9) has the form

g = 4R2 (dz̄1 dz1 + dz̄2 dz2)(|z1|2 + |z2|2) − (dz̄1 · z1 + dz̄2 · z2)(z̄1 dz1 + z̄2 dz2)

(|z1|2 + |z2|2)2
. (10)

Using the formula |z2|2 dz1 − z1z̄2 dz2 = |z2|2(dz)z2 by direct calculations we can reduce
expression (10) to the form

g = 4R2 dz dz̄

(1 + |z|2)2

which is the metric with the constant sectional curvature R−2 on the sphere S4.
The left action of the group UH(n + 1), consisting of quaternion matrices A of the size

(n + 1) × (n + 1) such that Ā
T
A = E, conserves the scalar product 〈· , ·〉 in the space

Hn+1, dimR UH(n+ 1) = (2n+ 3)(n+ 1). If we write every quaternion coordinates in Hn+1 as a
pair of complex numbers, then the group UH(n + 1) becomes the symplectic group Sp(n + 1).

Left and right multiplications always commute, so the left action of the group UH(n + 1)

is correctly defined also on the space Pn(H). Obviously, it is transitive and conserves
the metric g. The stationary subgroup of the point from the space Pn(H) with the
homogeneous coordinates (1, 0, . . . , 0) is the group UH(n)UH(1), where the group UH(n)

acts on the last n coordinates, and the group UH(1) acts by the left multiplication of all
homogeneous coordinates by quaternions with the unit norm. All stationary subgroups
on a homogeneous space are conjugated and hence isomorphic. Therefore Pn(H) =
UH(n + 1)/(UH(n)UH(1)).

The Lie algebra uH(n + 1) consists of quaternion matrices A of the size (n + 1) × (n + 1)

such that Ā
T = −A. Let Ekj be the matrix of the size (n+1)× (n+1) with the unique nonzero

element equalling 1, located at the intersection of the kth row and the j th column. Choose the
base for the algebra uH(n + 1) as

�kj = 1

2
(Ekj − Ejk) 1 � k < j � n + 1 ϒkj = i

2
(Ekj + Ejk)

�kj = j
2
(Ekj + Ejk) �kj = k

2
(Ekj + Ejk) 1 � k � j � n + 1.

(11)

2 To distinguish the point x ∈ M from their coordinates we shall single out it by the bold type.
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The commutative relations for these elements are

[�kj ,�ml] = 1
2 (δjm�kl − δkm�jl + δkl�jm − δjl�km)

[�kj ,ϒml] = 1
2 (δjmϒkl − δkmϒjl + δljϒkm − δlkϒjm)

(12)
[ϒkj ,ϒml] = 1

2 (δjm�lk + δkm�lj + δkl�mj + δjl�mk)

[ϒkj ,�ml] = 1
2 (δjm�lk + δkm�lj + δkl�mj + δjl�mk)

plus the analogous equalities, obtained from the latter three relations by the cyclic permutation
ϒ → � → � → ϒ , where �kj = −�jk,�kk = 0, ϒkj = ϒjk,�kj = �jk,�kj = �jk .

6. Algebras Diff(Pn(H)S) and Diff(Hn(H)S)

Consider now the total space of unit spheres bundle Pn(H)S over the space Pn(H). Let
(z, ζ), where z ∈ Pn(H), ζ ∈ TzPn(H) be a general point of the space Pn(H)S. Due to the
isomorphism P1(H) ∼= S4 we assume here n � 2.

Let z̃0 = (1, 0, . . . , 0) ∈ Hn+1, an element ξ0 ∈ Tz̃0H
n+1 ∼= Hn+1 has coordinates

(0, 1, 0, . . . , 0). Put z0 = π z̃0, ζ0 = π∗ξ0 ∈ Tz0 Pn(H).
The stationary subgroup K0 of the group UH(n + 1), corresponding to the point (z0, ζ0)

is generated by the group K1 = UH(n − 1), acting on the last (n − 1)th homogeneous
coordinates and by the group K2 = UH(1), acting by the left multiplication of all homogeneous
coordinates by quaternions with unit norm. The algebra k0 of the group K0 (corresponding to
proposition 1) is (2n2 − 3n + 4) dimensional and is generated by elements (11) with
3 � k � j � n + 1 and the elements:

n+1∑
k=1

ϒkk

n+1∑
k=1

�kk

n+1∑
k=1

�kk.

Choose the complementary subspace p̃ to the subalgebra k0 in the algebra g = uH(n + 1) as
the linear hull of elements:

�1k ϒ1k �1k �1k 2 � k � n + 1 �2k ϒ2k �2k �2k 3 � k � n + 1

ϒ∗ = i
2
(E11 − E22) �∗ = j

2
(E11 − E22) �∗ = k

2
(E11 − E22).

(13)

Taking into account relations (12) it is easily obtained that the expansion uH(n + 1) = p̃ ⊕ k0

is reductive, i.e. [p̃, k0] ⊂ p̃.
It is readily seen from (12) that setting

� = −�12 eλ,k−2 = �1k eλ,n−3+k = ϒ1k eλ,2n−4+k = �1k

eλ,3n−5+k = �1k fλ,k−2 = −�2k fλ,n−3+k = −ϒ2k fλ,2n−4+k = −�2k

fλ,3n−5+k = −�2k k = 3, . . . , n + 1 e2λ,1 = ϒ12 e2λ,2 = �12

e2λ,3 = �12 f2λ,1 = ϒ∗ f2λ,2 = �∗ f2λ,3 = �∗
(14)

we obtain the base from proposition 1 for q1 = 4n − 4, q2 = 3.
Now we find the full set of independent AdK0 -invariants in S(p̃). According to section 4,

the expansion p̃ = a ⊕ kλ ⊕ k2λ ⊕ pλ ⊕ p2λ is invariant w.r.t. the AdK0 -action. In the space a

the K0-action is trivial that gives the invariant D0 = � ∈ µ(pK0), already found in section 4.
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From formulae (14) we see that the space pλ
∼= Hn−1 consists of matrices of the form

(
0 −a∗

a 0

)
≡




0 0 −ā1 . . . −ān−1

0 0 0 . . . 0
a1 0 0 . . . 0
...

...
...

. . .
...

an−1 0 0 . . . 0


 a1, . . . , an−1 ∈ H.

Likewise, the space kλ
∼= Hn−1 consists of matrices of the form


0 0 0

0 0 −b∗

0 b 0


 ≡




0 0 0 . . . 0
0 0 −b̄1 . . . −b̄n−1

0 b1 0 . . . 0
...

...
...

. . .
...

0 bn−1 0 . . . 0


 b1, . . . , bn−1 ∈ H.

Due to the formula(
1 0
0 U

)(
0 −a∗

a 0

)(
1 0
0 U ∗

)
=

(
0 −(Ua)∗

Ua 0

)
U ∈ UH(n − 1) a ∈ Hn−1

the action of the group K1 on the space pλ is equivalent to the standard action of the group
UH(n− 1) on the space Hn−1 : a → Ua. In the space kλ the action of K1 is similar: b → Ub.

The standard action of the group UH(n − 1) on the space Hn−1 has one independent
real invariant: 〈z, z〉, z ∈ Hn−1, and the diagonal action of UH(n − 1) on the space
pλ ⊕ kλ

∼= Hn−1 ⊕ Hn−1 has six (independent iff n � 3) real invariants:

〈z1, z1〉 ∈ R 〈z2, z2〉 ∈ R 〈z1, z2〉 ∈ H ∼= R4 z1, z2 ∈ Hn−1. (15)

Denote the corresponding elements from µ(p̃K1) ∈ U(g)K1 in the following way:

D1 =
n+1∑
k=3

(
�2

1k + ϒ2
1k + �2

1k + �2
1k

)
D2 =

n+1∑
k=3

(
�2

2k + ϒ2
2k + �2

2k + �2
2k

)

D3 = −1

2

n+1∑
k=3

({�1k, �2k} + {ϒ1k, ϒ2k} + {�1k, �2k} + {�1k,�2k})

�1 = 1

2

n+1∑
k=3

(−{�1k, ϒ2k} + {�2k, ϒ1k} + {�1k, �2k} − {�2k, �1k}) (16)

�2 = 1

2

n+1∑
k=3

(−{�1k, �2k} + {�2k, �1k} + {ϒ1k,�2k} − {ϒ2k,�1k})

�3 = 1

2

n+1∑
k=3

(−{�1k,�2k} + {�2k,�1k} + {�1k, ϒ2k} − {�2k, ϒ1k}).

If n = 2, then there is the unique independent relation between invariants (15):

|〈z1, z2〉|2 = |z̄1z2|2 = |z1|2|z2|2 = 〈z1, z1〉〈z2, z2〉, z1 = z1, z2 = z2 ∈ H. (17)

If we write this identity in coordinates, then we will obtain the well-known Euler identity
which is the key ingredient in the proof of the Lagrange theorem from number theory: if two
integers have the form a2 + b2 + c2 + d2, a, b, c, d ∈ Z, then their product has the same form.

The elements D1,D2,D3, already found in section 4, are invariant w.r.t. the action
of the whole group K0, therefore they correspond to operators of the second order from
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Diff(Pn(H)S). The elements �1,�2,�3 are not invariant w.r.t. the action of the group
K2 ∼= UH(1). Obviously, the K2-action on the linear hull of elements �1,�2,�3 is equivalent
to the well-known action of the group SO(3)∼= UH(1)/(1,−1) on the space H′ of pure
imaginary quaternions:

x → qxq̄ x ∈ H′ q ∈ UH(1)

after the identification �1 ↔ i,�1 ↔ j,�3 ↔ k.
The K2-action on three-dimensional spaces p2λ, k2λ is the same after the identification

ϒ12, ϒ∗ ↔ i;�12,�∗ ↔ j;�12,�∗ ↔ k; while the K1-action on these spaces is trivial. Thus
we find invariants of diagonal action of the group SO(3) on the space R3 ⊕R3 ⊕R3. It is clear
that there are 6 = 9 − 3 such independent invariants:

〈x, x〉, 〈y, y〉, 〈z, z〉, 〈x, y〉, 〈x, z〉, 〈z, y〉, x, y, z ∈ R3

and invariant 〈x, y, z〉 ≡ 〈x, y × z〉 algebraically connected with the first six:

〈x, y, z〉2 = x2y2z2 + 2〈x, y〉〈x, z〉〈y, z〉 − x2〈y, z〉2 − y2〈x, z〉2 − z2〈x, y〉2 (18)

where y × z is the standard vector product in R3. Relation (18) can be verified using the
well-known formulae: 〈x, y〉2 = x2y2 − 〈x × y〉2 and x × (y × x) = 〈x, z〉y − 〈x, y〉z.

It gives the following invariants from U(g)K0 :

D4 = ϒ2
12 + �2

12 + �2
12 D5 = ϒ2

∗ + �2
∗ + �2

∗
D6 = 1

2 ({ϒ12, ϒ∗} + {�12,�∗} + {�12,�∗})
D7 = 1

2 ({�1, ϒ12} + {�2,�12} + {�3,�12}) (19)

D8 = 1
2 ({�1, ϒ∗} + {�2,�∗} + {�3,�∗}) D9 = �2

1 + �2
2 + �2

3

D10 = �1�12�∗ − �1�∗�12 + �2ϒ∗�12 − �2ϒ12�∗ + �3�∗ϒ12 − �3�12ϒ∗.

Here we took into account that every three factors from all summands in the last expression
pairwise commutate. The invariants D4,D5,D6 correspond to the general case, considered in
section 4.

In fact invariants D7,D8,D9 and D10 are not in µ(pK0) because they are not symmetric
w.r.t. all transpositions of their factors of the first degree. After complete symmetrization we
can obtain invariants from µ(pK0) : D̃k ≡ Dk + D∗

k mod (U(g)k)K0 , k = 7, 8, 9, 10, where D∗
k

are elements from U(g)K0 with deg D∗
k < deg Dk . For convenience we will use elements Dk

instead of D̃k, k = 7, 8, 9, 10.
Thus operators D0, . . . , D10 generate the algebra Diff(Pn(H)S).
The degrees of the generators are as follows:

deg(D0) = 1 deg(D1) = deg(D2) = deg(D3) = deg(D4) = deg(D5) = deg(D6) = 2

deg(D7) = deg(D8) = 3 deg(D9) = deg(D10) = 4.

(20)

In the model of the space Pn(H) we can transpose the coordinates z1 and z2. The operators
D3,D4,D5,D8,D9,D10 are symmetric (invariant) w.r.t. this transposition and the operators
D0,�1,�2,�3,D6,D7 are skew symmetric. The operators D1 and D2 turn into each other
under this transposition.

It is easily verified that automorphisms ζα, σ acts on �i , D7, . . . , D10, i = 1, 2, 3 as

ζα(�i ) = �i i = 1, 2, 3 ζα(D7) = cos(α)D7 − sin(α)D8

ζα(D8) = sin(α)D7 + cos(α)D8 ζα(D9) = D9 ζα(D10) = D10 σ(�i ) = −�i

i = 1, 2, 3 σ(D7) = D7 σ(D8) = −D8 σ(D9) = D9 σ(D10) = D10.
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Taking into account their action on other generators (see section 4) we obtain that the
transposition of z1 and z2 is equivalent to the composition σ ◦ ζπ .

In order to get the generators of the algebra Diff(Hn(H)S) one can use remark 1, formula
(14) and make the formal substitution:

� → i� �1k → i�1k ϒ1k → iϒ1k �1k → i�1k

�1k → i�1k ϒ12 → iϒ12 �12 → i�12 �12 → i�12

�2k → �2k ϒ2k → ϒ2k �2k → �2k �2k → �2k

ϒ∗ → ϒ∗ �∗ → �∗ �∗ → �∗ k = 3, . . . , n + 1.

This substitution produces the following substitution for the generators D0, . . . , D10:

D0 → iD̄0 D1 → −D̄1 D2 → D̄2 D3 → iD̄3

D4 → −D̄4 D5 → D̄5 D6 → iD̄6 D7 → −D̄7

D8 → iD̄8 D9 → −D̄9 D10 → −D̄10.

(21)

The operators D̄0, . . . , D̄10 generate the algebra Diff(Hn(H)S).

7. Relations in algebras Diff(Pn(H)S) and Diff(Hn(H)S)

Here we find the independent relations in Diff(Pn(H)S) for its generators D0, . . . , D10. They
are of two types (see section 2). The first type is commutative relations, because a commutator
of two differential operator of orders m1 and m2 is an operator of an order m3 � m1 + m2 − 1.
It gives 11(11 − 1)/2 = 55 relations. If n � 3 due to (18) the second type consists of only
one independent relation of the form

D2
10 − D4D5D9 − 2D6D7D8 + D9D

2
6 + D4D

2
8 + D5D

2
7 = D′ (22)

where D′ is an operator of order �7, which is polynomial in D0, . . . , D10. If n = 2 formula
(17) gives another independent relation of the form

1
2 {D1,D2} − D2

3 − D9 = D′′

where D′′ is an operator of order �3, polynomial in D0, . . . , D8. The direct calculations give
D′′ = D1 + D2, therefore in the case n = 2 we have the additional relations:

1
2 {D1,D2} − D2

3 − D9 = D1 + D2. (23)

For n = 2 using this relation we can exclude the element D9 from the list of generators.
In principle, all relations can be obtained by straightforward calculations in U(g) modulo

(U(g)k)K0 , but these calculations became too cumbersome to write all of them here. In
appendix A there is an example of deriving some commutative relations. After getting
some commutative relations by direct calculations it is possible to get some other ones (see
appendix A) using the Jacobi identity:

[Di, [Dj,Dk]] + [Dk, [Di,Dj ]] + [Dj, [Dk,Di]] = 0

which is valid, in particular, in every associative algebra. This identity gives also a tool
for checking the commutative relations already found. Below there are all 55 commutative
relations in lexicographic order. Relation (22) becomes too difficult to obtain in a similar way.
Maybe we need computer algebra calculations to obtain the explicit expression for D′
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[D0,D1] = −D3 [D0,D2] = D3 [D0,D3] = 1
2 (D1 − D2)

[D0,D4] = −2D6 [D0,D5] = 2D6 [D0,D6] = D4 − D5

[D0,D7] = −D8 [D0,D8] = D7 [D0,D9] = 0

[D0,D10] = 0 [D1,D2] = −{D0,D3} − 2D7

[D1,D3] = − 1
2 {D0,D1} + D8 + n(n − 1)D0

[D1,D4] = 2D7 [D1,D5] = 0 [D1,D6] = D8

[D1,D7] = − 1
2 {D3,D6} − 1

2 {D1,D4} + 3
8 (D1 − D2) + D9 + D10 + n(n − 1)D4

[D1,D8] = − 1
2 {D3,D5} − 1

2 {D1,D6} + 3
4D3 + n(n − 1)D6

[D1,D9] = −{D3,D8} − {D1,D7} − 3
4 {D0,D3} + 2

(
n − 3

2

)(
n + 1

2

)
D7

[D1,D10] = 1
2 {D6,D8} − 1

2 {D5,D7} + 3
8 {D0,D3} + 1

2D7

[D2,D3] = 1
2 {D0,D2} + D8 − n(n − 1)D0 [D2,D4] = −2D7

[D2,D5] = 0 [D2,D6] = −D8

[D2,D7] = − 1
2 {D3,D6} + 1

2 {D2,D4} + 3
8 (D1 − D2) − D9 − D10 − n(n − 1)D4

[D2,D8] = − 1
2 {D3,D5} + 1

2 {D2,D6} + 3
4D3 − n(n − 1)D6

[D2,D9] = −{D3,D8} + {D2,D7} + 3
4 {D0,D3} − 2

(
n − 3

2

)(
n + 1

2

)
D7

[D2,D10] = − 1
2 {D6,D8} + 1

2 {D5,D7} − 3
8 {D0,D3} − 1

2D7 [D3,D4] = 0

[D3,D5] = 2D8 [D3,D6] = D7 [D3,D7] = − 1
4 {D1 + D2,D6} + n(n − 1)D6

[D3,D8] = − 1
4 {D1 + D2,D5} + n(n − 1)D5 + D9 + D10

[D3,D9] = − 1
2 {D1 + D2,D8} + 3

8 {D0,D1 − D2} + 2
(
n − 3

2

)(
n + 1

2

)
D8

[D3,D10] = 1
2 {D6,D7} − 1

2 {D4,D8} − 3
16 {D0,D1 − D2} + 1

2D8

[D4,D5] = −2{D0,D6} [D4,D6] = −{D0,D4} + 3
2D0

[D4,D7] = 1
2 {D1 − D2,D4} + 3

4 (D2 − D1) [D4,D8] = 1
2 {D1 − D2,D6} − {D0,D7}

[D4,D9] = {D1 − D2,D7} [D4,D10] = 0 [D5,D6] = {D0,D5} − 3
2D0

[D5,D7] = {D3,D6} + {D0,D8} [D5,D8] = {D3,D5} − 3
2D3

[D5,D9] = 2{D3,D8} [D5,D10] = 0

[D6,D7] = 1
4 {D1 − D2,D6} + 1

2 {D3,D4} + 1
2 {D0,D7} − 3

4D3

[D6,D8] = 1
4 {D1 − D2,D5} + 1

2 {D3,D6} − 1
2 {D0,D8} + 3

8 (D2 − D1)

[D6,D9] = 1
2 {D1 − D2,D8} + {D3,D7} [D6,D10] = 0

[D7,D8] = 1
4 {D1 − D2,D8} − 1

2 {D3,D7} + 3
16 {D0,D1 + D2}

− 1
2 {D0,D9 + D10} − 3

4n(n − 1)D0

[D7,D9] = 1
4 {D3,D6} + 1

8 {D1 − D2,D4} + 1
2 {D1 − D2,D9 + D10} − 3

8

(
D2

1 − D2
2

)
+ 3

4

(
n2 − n − 1

4

)
(D1 − D2)

[D7,D10]= 1
4

{
D2 − D1,D

2
6

}− 1
4 {{D0,D7},D6}+ 1

4 {{D0,D4},D8} + 1
8 {{D1−D2,D5},D4}

− 1
4 {D3,D6} + 1

8 {D2 − D1, 3D4 + D5} − 1
2 {D0,D8} + 15

32 (D1 − D2)

[D8,D9] = 1
8 {D1 − D2,D6} + 1

4 {D3,D5} − 3
8 {D3,D1 + D2}

+ {D3,D9 + D10} + 3
2

(
n2 − n − 1

4

)
D3
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[D8,D10] = − 1
4 {{D3,D6},D6} + 1

4 {{D0,D6},D8} − 1
4 {{D0,D5},D7} + 1

4 {{D3,D5},D4}
− 1

2 {D3,D5} − 1
4 {D3,D4} + 1

4 {D0,D7} + 9
16D3

[D9,D10] = 1
4 {−{D6,D8} + {D5,D7},D1 − D2} + 1

2 {{D3,D8},D4}
− 1

2 {{D3,D6},D7} + 1
4 {D2 − D1,D7} − 1

2 {D3,D8}.
(24)

It is interesting that the operators D9 and D10 arise in the right-hand sides of these relations
only in the combination D9 + D10.

Using relations (24) it is not difficult to verify that the operator D∗ = D2
0 + D1 + D2 +

D4 + D5 lies in the centre of the algebra Diff(Pn(H)S) in accordance with section 4.
Using substitution (21) one can obtain from (24) the commutative relations for the algebra

Diff(Hn(H)S).
The analogue for the operator D∗ from the centre of the algebra now becomes

D̄∗ = D̄2
0 + D̄1 − D̄2 + D̄4 − D̄5 ∈ Diff(Hn(H)S). In the case n = 2 the additional relations

(23) become

1
2 {D̄1, D̄2} − D̄2

3 − D̄9 = D̄1 − D̄2.

8. Algebras Diff(Pn(C)S) and Diff(Hn(C)S)

8.1. The model for the space Pn(C)

Taking the factor space of Cn+1\{0} w.r.t the action of the multiplicative group C∗ = C\{0}
(due to the commutativity of the complex multiplication it makes no difference left or right),
we obtain the complex projective space Pn(C). Let π : Cn+1\{0} → Pn(C) be the canonical
projection. Let now 〈x, y〉 := ∑n+1

i=1 x̄iyi, x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) ∈ Cn+1 be
the standard scalar product in the space Cn+1.

The metric g̃ of the constant holomorphic sectional curvature on the space Pn(C) is defined
by the same formula (8) as on the space Pn(H), where now z ∈ Cn+1\{0}, ξi ∈ TzC

n+1, ζi =
π∗ξi ∈ Tπ(z)(Pn(C)), i = 1, 2.

The Riemannian metric g on the space Pn(C) is

g = 4R2 Re g̃. (25)

If n = 2 it is not difficult to verify (as in section 5) that the homeomorphism τ : P1(C) →
C̄ ∼= S2, τ (z1, z2) = z1(z2)

−1 = z ∈ C, transforms (25) into the metric

g = 4R2 dz dz̄

(1 + |z|2)2

of the sectional curvature R−2 on the sphere S2.
The left action of the group G = SU(n+1) on the space Cn+1 conserves the scalar product

〈· , ·〉 and induces the action on the space Pn(C), conserving metrics g̃ and g.
The stationary subgroup, corresponding to the point of the space Pn(C) with homogeneous

coordinates (1 : 0 : . . . : 0), is the group U(n) = SU(n)U(1), where the factor SU(n) acts in
the standard way on the last n coordinates, and the factor U(1) acts by multiplication of the first
coordinate by eiφ and the second one by e−iφ, φ ∈ R mod 2π . Thus Pn(C) = SU(n+1)/U(n).

Choose a base of the algebra su(n + 1) in the form

�kj = 1
2 (Ekj − Ejk) ϒkj = i

2
(Ekj + Ejk) 1 � k < j � n + 1 (26)
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ϒk = i
2
(E11 − Ekk) 2 � k � n + 1. (27)

The commutators for these elements are easily extracted from (12), taking into account that
ϒk = 1

2 (ϒ11 − ϒkk) using the notation from (11).

8.2. Algebras Diff (Pn(C)S) and Diff (Hn(C)S)

Consider now the space Pn(C)S. Due to the isomorphism P1(C)∼= S2 we again assume that
n � 2.

Let z̃0 = (1, 0, . . . , 0) ∈ Cn+1, an element ξ0 ∈ Tz̃0C
n+1 ∼= Cn+1 has coordinates

(0, 1, 0, . . . , 0). Put z0 = π z̃0, ζ0 = π∗ξ0 ∈ Tz0 Pn(C).
The stationary subgroup K0 of the group SU(n + 1), corresponding to the point (z0, ζ0),

is generated by the group K1 = SU(n − 1), acting on the last (n − 1)th coordinates and by
the group K2 = U(1), acting on the homogeneous coordinates of Pn(C) as

(x1 : . . . : xn+1) → (eiφx1 : eiφx2 : e−2iφx3 : x4 : . . . : xn+1) (28)

dimR K0 = (n − 1)2 and we obtain K0 ∼= U(n − 1).
The algebra k0 of the group K0 is the linear hull of elements (26) as 3 � k < j � n + 1

and elements:

ϒj − ϒ3 = i
2
(E33 − Ejj ) 3 < j � n + 1 2ϒ3 − ϒ2 = i

2
(E11 + E22 − 2E33).

Choose the complementary subspace p̃ to the subalgebra k0 in the algebra g = su(n + 1)

as the linear hull of elements:

�1k ϒ1k 2 � k � n + 1 �2k ϒ2k 3 � k � n + 1 ϒ∗ = ϒ2. (29)

Taking into account relations (12) it is easily obtained that the expansion su(n + 1) = p̃ ⊕ k0

is reductive, i.e. [p̃, k0] ⊂ p̃.
We will obtain the particular case of proposition 1 for q1 = 2n − 2, q2 = 1 setting

� = −�12 eλ,k−2 = �1k eλ,n−3+k = ϒ1k fλ,k−2 = −�2k

fλ,n−3+k = −ϒ2k e2λ,1 = ϒ12 f2λ,1 = ϒ∗ k = 3, . . . , n + 1.
(30)

Now we find the generators of AdK0 -invariants in S(p̃). The expansion p̃ = a ⊕ kλ ⊕
k2λ ⊕ pλ ⊕ p2λ is invariant w.r.t. the AdK0 -action. In the spaces a, p2λ, k2λ the K0-action is
trivial that gives the invariants D0 = �,D4 = ϒ12,D5 = ϒ∗ ∈ µ(pK0). Operators D4,D5

are square roots of their analogues from section 4.
From formulae (30) we see that the space pλ

∼= Cn−1 consists of matrices of the form

(
0 −a∗

a 0

)
≡




0 0 −ā1 . . . −ān−1

0 0 0 . . . 0
a1 0 0 . . . 0
...

...
...

. . .
...

an−1 0 0 . . . 0


 a1, . . . , an−1 ∈ C.

Similarly, the space kλ
∼= Cn−1 consists of matrices of the form


0 0 0

0 0 −b∗

0 b 0


 ≡




0 0 0 . . . 0
0 0 −b̄1 . . . −b̄n−1

0 b1 0 . . . 0
...

...
...

. . .
...

0 bn−1 0 . . . 0


 b1, . . . , bn−1 ∈ C.
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The action of the group K1 on the spaces pλ and kλ is equivalent to the standard action of the
group SU(n − 1) on the space Cn−1 : a → Ua,U ∈ SU(n − 1), likewise in section 6. It is
easy to verify that the action (28) generates the action a1 → exp−3iφ a1, ai → exp−iφ ai, b1 →
exp−3iφ b1, bi → exp−iφ bi, i = 2, . . . , n − 1. Therefore, the K0-action on spaces pλ and kλ is
equivalent to the standard U(n − 1)-action on Cn−1.

This action has one independent real invariant: 〈z, z〉, z ∈ Cn−1, and the diagonal action of
U(n− 1) on the space pλ ⊕ kλ

∼= Cn−1 ⊕Cn−1 has four (independent iff n � 3) real invariants:

〈z1, z1〉 ∈ R 〈z2, z2〉 ∈ R 〈z1, z2〉 ∈ C ∼= R2 z1, z2 ∈ Cn−1. (31)

Denote the corresponding elements from µ(p̃K0) ∈ U(g)K0 in the following way:

D1 =
n+1∑
k=3

(
�2

1k + ϒ2
1k

)
D2 =

n+1∑
k=3

(
�2

2k + ϒ2
2k

)

D3 = −1

2

n+1∑
k=3

({�1k, �2k} + {ϒ1k, ϒ2k}) � = 1

2

n+1∑
k=3

(−{�1k, ϒ2k} + {�2k, ϒ1k}).
(32)

In this case only operator � is new w.r.t. section 4.
If n = 2, then there is the unique independent relation between invariants (31):

|〈z1, z2〉|2 = |z̄1z2|2 = |z1|2|z2|2 = 〈z1, z1〉〈z2, z2〉 z1 = z1 z2 = z2 ∈ C. (33)

Thus operators D0, . . . , D5,� generate the algebra Diff(Pn(C)S).
The degrees of the generators are as follows:

deg(D0) = deg(D4) = deg(D5) = 1 deg(D1) = deg(D2) = deg(D3) = deg(�) = 2.

(34)

The operators D3,D4 are symmetric and the operators D0,�,D5 are skew symmetric
w.r.t. the transposition of coordinates z1 and z2. The operators D1 and D2 turn into each other
under this transposition.

In order to get the generators of the algebra Diff(Hn(C)S) we can use the formal
substitution:

� → i� �1k → i�1k ϒ1k → iϒ1k ϒ12 → iϒ12

�2k → �2k ϒ2k → ϒ2k ϒ∗ → ϒ∗ k = 3, . . . , n + 1.

This substitution produces the following substitution for the generators D0, . . . , D5,�:

D0 → iD̄0 D1 → −D̄1 D2 → D̄2

D3 → iD̄3 D4 → iD̄4 � → i�̄ D5 → D̄5.
(35)

The operators D̄0, . . . , D̄5, �̄ generate the algebra Diff(Hn(C)S).

8.3. Relations in algebras Diff (Pn(C)S) and Diff (Hn(C)S)

The commutative relation for the algebra Diff(Pn(C)S) are as follows:

[D0,D1] = −D3 [D0,D2] = D3 [D0,D3] = 1

2
(D1 − D2)

[D0,D4] = −D5 [D0,D5] = D4 [D0,�] = 0

[D1,D2] = −{D0,D3} − {�,D4} [D1,D3] = −1

2
{D0,D1} +

1

2
{�,D5} +

(n − 1)2

4
D0

[D1,D4] = � [D1,D5] = 0 [D1,�] = −1

2
{D1,D4} − 1

2
{D3,D5} +

(n − 1)2

4
D4
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[D2,D3] = 1

2
{D0,D2} +

1

2
{�,D5} − (n − 1)2

4
D0 [D1,D4] = �

[D2,D5] = 0 [D2,�] = 1

2
{D2,D4} − 1

2
{D3,D5} − (n − 1)2

4
D4 [D3,D4] = 0

[D3,D5] = � [D3,�] = −1

4
{D1 + D2,D5} +

(n − 1)2

4
D5 [D4,D5] = −D0

[D4,�] = 1

2
(D1 − D2) [D5,�] = D3.

If n > 2 then there are no relations of the second type. If n = 2 then there is one relation
of the second type due to (33):

1
2 {D1,D2} − D2

3 − �2 − 1
4

(
D2

0 + D2
4 + D2

5

) = 0. (36)

It is easy to verify that the operator D∗ = D2
0 + D1 + D2 + D2

4 + D2
5 lies in the centre of the

algebra Diff(Pn(C)S) in accordance with section 4.
Using substitution (35) we obtain analogous relations for the algebra Diff(Hn(C)S).
The commutative relation are now as follows:

[D̄0, D̄1] = D̄3 [D̄0, D̄2] = D̄3 [D̄0, D̄3] = 1

2
(D̄2 + D̄1) [D̄0, D̄4] = D̄5

[D̄0, D̄5] = D̄4 [D̄0, �̄] = 0 [D̄1, D̄2] = −{D̄0, D̄3} − {�̄, D̄4}
[D̄1, D̄3] = −1

2
{D̄0, D̄1} − 1

2
{�̄, D̄5} − (n − 1)2

4
D̄0 [D̄1, D̄4] = −�̄

[D̄1, D̄5] = 0 [D̄1, �̄] = −1

2
{D̄1, D̄4} +

1

2
{D̄3, D̄5} − (n − 1)2

4
D̄4

[D̄2, D̄3] = 1

2
{D̄0, D̄2} +

1

2
{�̄, D̄5} − (n − 1)2

4
D̄0 [D̄1, D̄4] = −�̄

[D̄2, D̄5] = 0 [D̄2, �̄] = 1

2
{D̄2, D̄4} − 1

2
{D̄3, D̄5} − (n − 1)2

4
D̄4

[D̄3, D̄4] = 0 [D̄3, D̄5] = �̄ [D̄3, �̄] = −1

4
{D̄1 − D̄2, D̄5} − (n − 1)2

4
D̄5

[D̄4, D̄5] = −D̄0 [D̄4, �̄] = 1

2
(D̄1 + D̄2) [D̄5, �̄] = D̄3.

If n > 2 then there are no relations of the second type. If n = 2 then there is one relation
of the second type analogous to (36):

1
2 {D̄1, D̄2} − D̄

2
3 − �̄2 − 1

4

(
D̄

2
0 + D̄

2
4 − D̄

2
5

) = 0. (37)

The operator D̄
∗ = D̄

2
0 + D̄1 − D̄2 + D̄

2
4 − D̄

2
5 lies in the centre of the algebra Diff(Hn(C)S).

9. Algebras Diff(Pn(R)S), Diff
(
Sn

S

)
and Diff(Hn(R)S)

9.1. Generators of algebras Diff
(
Sn

S

)
and Diff (Hn(R)S)

Let now 〈· , ·〉 be the standard scalar product in the space Rn+1. The equation 〈x, x〉 = R > 0
defines the sphere Sn ∼= SO(n + 1)/SO(n) ⊂ Rn+1 of the radius R with the induced metric on
it. The space Pn(R) is the factor space of Sn w.r.t. the relation: x ∼ −x. Below we will show
that algebras Diff(Pn(R)S) and Diff

(
Sn

S

)
are isomorphic.

The spaces S1
S, P1(R)S are one dimensional and the algebra of invariant differential

operators on them is generated by one differential operator of the first order. Therefore, we
again suppose that n � 2.
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Let

�kj = 1
2 (Ekj − Ejk) 1 � k < j � n + 1 (38)

be the base of the algebra so(n+ 1). The commutative relations for them are contained in (12).
Consider the space Sn

S. Let z̃0 = (1, 0, . . . , 0) ∈ Rn+1, an element ξ0 ∈ Tz̃0R
n+1 ∼= Rn+1

has coordinates (0, 1, 0, . . . , 0). Put z0 = π z̃0, ζ0 = π∗ξ0 ∈ Tz0 Sn
S.

The stationary subgroup K0 of the group SO(n + 1), corresponding to the point
(z0, ζ0) ∈ Sn

S, is the group SO(n − 1), acting onto the last (n − 1)th coordinates.
The group SO(n + 1) is a group covering of the identity component G of the isometry

group for Pn(R). The group K0 = SO(n − 1) ⊂ SO(n + 1) is a group covering of its analogue
K ′

0 ⊂ G. The kernel of such covering is a normal subgroup of SO(n−1) that lies in the centre of
SO(n−1) [17] (lecture 9). Therefore, the orbits of AdK0 - and AdK ′

0
-actions on p ⊂ g coincide

and the construction from section 2 implies the isomorphism Diff(Pn(R)S)∼= Diff
(
Sn

S

)
.

The algebra k0 of the group K0 is the linear hull of elements �kj as 3 � k < j � n + 1.
Choose the complementary subspace p̃ to the subalgebra k0 in the algebra g = so(n + 1) as
the linear hull of elements:

�1k 2 � k � n + 1 �2k 3 � k � n + 1. (39)

The expansion so(n + 1) = p̃ ⊕ so(n − 1) is reductive.
We will obtain the particular case of proposition 1 for q1 = 0, q2 = n − 1 setting

� = −2�12 e2λ,k−2 = 2�1k f2λ,k−2 = −2�2k k = 3, . . . , n + 1. (40)

Now we have the expansion p̃ = a ⊕ k2λ ⊕ p2λ, which is invariant w.r.t. the AdK0 -action.
It is easy to see that on the space a the K0-action is trivial and on the spaces k2λ and p2λ it is
equivalent to the standard action of the group SO(n − 1) on the space Rn−1. The K0-action
on the space a has the invariant D0 = �. The description of base K0-invariants on the space
p2λ ⊕ k2λ is different in cases n = 2, n = 3 and n � 4.

9.1.1. The case n � 4. The SO(n − 1)-action in Rn−1 has one independent real invariant:
〈z, z〉, z ∈ Rn−1, and the diagonal action of SO(n − 1) on the space p2λ ⊕ k2λ

∼= Rn−1 ⊕ Rn−1

has three independent real invariants:

〈z1, z1〉 〈z2, z2〉 〈z1, z2〉 z1, z2 ∈ Rn−1. (41)

Denote the corresponding elements from µ(p̃K0) ∈ U(g)K0 in the following way:

D1 = 4
n+1∑
k=3

�2
1k D2 = 4

n+1∑
k=3

�2
2k D3 = −2

n+1∑
k=3

{�1k, �2k}.

All these invariants were found in section 4 for the general situation.
Thus operators D0,D1,D2,D3 generate the algebra Diff

(
Sn

S

)
.

The degrees of the generators are as follows:

deg(D0) = 1 deg(D1) = deg(D2) = deg(D3) = 2. (42)

The operator D3 is symmetric and the operators D0 is skew symmetric w.r.t. the
transposition of coordinates z1 and z2. The operators D1 and D2 turn into each other under
this transposition.

9.1.2. The case n = 2. In this case K0 is the trivial group and the independent invariants
are D0,D1 = e2λ,1,D2 = f2λ,1. Thus the algebra Diff

(
S2

S

)
is isomorphic to U(so(3)). The

centre of this algebra is generated by the operator D2
0 + D2

1 + D2
2.
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9.1.3. The case n = 3. In this case K0 = so(2) and we have the additional (with respect to
the case n � 4) invariant of the second order

� = 2({�13, �24} − {�14, �23}).
It is algebraically connected with operators D0,D1,D2,D3 which are defined as in the case
n � 4.

9.1.4. Generators of the algebra Diff (Hn(R)S). First, let n � 4. In order to get the
generators of the algebra Diff(Hn(R)S) we can use the formal substitution:

� → i� �1k → i�1k �2k → �2k k = 3, . . . , n + 1.

This substitution produces the following substitution for the generators D0, . . . , D3:

D0 → iD̄0 D1 → −D̄1 D2 → D̄2 D3 → iD̄3. (43)

The operators D̄0, . . . , D̄3 generate the algebra Diff(Hn(R)S).
In the case n = 3 we have the additional substitution � → i�̄ and the operators

D̄0, . . . , D̄3, �̄ generate the algebra Diff(H3(R)S).
In the case n = 2 we obtain the substitution

D0 → iD̄0 D1 → iD̄1 D2 → D̄2.

The algebra Diff(H2(R)S) is isomorphic to U(so(2, 1)) and its centre is generated by the
operator D2

0 + D2
1 − D2

2.

9.2. Relations in algebras Diff
(
Sn

S

)
and Diff (Hn(R)S)

Here we shall consider only the case n � 3, since Diff
(
S2

S

) ∼= U(so(3)) and Diff(H2(R)S)∼=
U(so(2, 1)).

The commutative relations for the algebra Diff
(
Sn

S

)
are as follows:

[D0,D1] = −2D3 [D0,D2] = 2D3 [D0,D3] = D1 − D2

[D1,D2] = −2{D0,D3} [D1,D3] = −{D0,D1} +
(n − 1)(n − 3)

2
D0

[D2,D3] = {D0,D2} − (n − 1)(n − 3)

2
D0.

For n = 3 the additional operator � lies in the centre of the algebra Diff
(
S3

S

)
.

If n > 3 then there are no relations of the second type. If n = 3 then there is one relation
of the second type:

1
2 {D1,D2} − D2

0 = D2
3 + �2. (44)

It is easy to verify that the operators D∗
1 = D2

0 + D1 + D2 and

D∗
2 = 1

2
{D1,D2} − D2

3 +

(
1 − (n − 3)(n − 1)

4

)
(D1 + D2)

lie in the centre of the algebra Diff
(
Sn

S

)
. If n = 3 it holds that D∗

2 = �2 + D∗
1 due to (44). In

this case two operators D∗
1 and � generate the centre of the algebra Diff

(
S3

S

)
.

Using substitution (43) we obtain analogous relations for the algebra Diff(Hn(R)S).
The commutative relation are now as follows:

[D̄0, D̄1] = 2D̄3 [D̄0, D̄2] = 2D̄3 [D̄0, D̄3] = D̄2 + D̄1

[D̄1, D̄2] = −2{D̄0, D̄3} [D̄1, D̄3] = −{D̄0, D̄1} − (n − 1)(n − 3)

2
D̄0

[D̄2, D̄3] = {D̄0, D̄2} − (n − 1)(n − 3)

2
D̄0
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and for n = 3 also

[D̄0,�] = [D̄1,�] = [D̄2,�] = [D̄3,�] = 0.

The first three relations were found in [4], but the other relations were not calculated there.
If n > 3 then there are no relations of the second type. If n = 3 then there is one relation

of the second type analogous to (44):
1
2 {D̄1, D̄2} − D̄

2
0 = D̄

2
3 + �̄2. (45)

The operators D̄
∗
1 = D̄

2
0 + D̄1 − D̄2 and

D̄
∗
2 = 1

2
{D̄1, D̄2} − D̄

2
3 +

(
1 − (n − 3)(n − 1)

4

)
(D̄1 − D̄2)

lie in the centre of the algebra Diff(Hn(R)S) and if n = 3 it holds that D̄
∗
2 = �̄2 + D̄

∗
1 due to

(45). In this case the operators D̄
∗
1 and �̄ generate the centre of the algebra Diff

(
H3

S

)
.

10. The model of the space P2(Ca)

Our description of Caley algebra Ca and the octonionic projective plane P2(Ca) in this section
is based on [16–18].

10.1. The algebra Ca

According to Frobenius theorem there are only four finite-dimensional division algebras over
R: R itself and algebras C, H, Ca. The latter is an eight-dimensional normed division algebra
of octonions. It is noncommutative and nonassociative, but alternative, i.e. for any two elements
ξ, η ∈ Ca it holds that (ξη)η = ξ(ηη) and ξ(ξη) = (ξξ)η. The group of all automorphisms
of Ca is the exceptional simple compact 14-dimensional Lie group G2. The standard base of
Ca over R is {ei}7

i=0, where e0 = 1 ∈ R and e2
i = −1, eiej = −ej ei, i, j = 1, . . . , 7, i �= j .

The elements {ei}7
i=1 are multiplied according to the following scheme:

e4

e1

e6

e3

e2
e5 e7

Here eiej = ek if these elements lie on one line or on the circle and are ordered by
arrows as ei, ej , ek . The conjugation ι : Ca �→ Ca acts as ι(e0) ≡ e0 = e0, ι(ei) ≡
ei = −ei, i = 1, . . . , 7 and is extended by linearity over whole Ca. Let Re ξ =
1
2 (ξ + ξ̄ ), Im ξ = 1

2 (ξ − ξ̄ ), ξ ∈ Ca. Define the scalar product in Ca by the formula:
〈η, ξ 〉 = 1

2 (η̄ξ + ξ̄η) = Re(ξ̄η) = Re(η̄ξ) ∈ R and the norm by the formula ‖η‖ = 〈η, η〉1/2.
In the algebra Ca every two elements generate an associative subalgebra and the following
central Moufang identity is valid:

u · xy · u = ux · yu u, x, y ∈ Ca. (46)

Here we use the notation u · xy := u(xy), xy · u := (xy)u.
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There are the following descriptions of spinor and vector representations (all eight
dimensional) of the group Spin(8) in Ca [17, 19], which will be used later. Define linear
operators in Ca:

Lα : ξ �→ 1
2eαξ α = 1, . . . , 7 ξ ∈ Ca

Lα,β : ξ �→ 1
2eα(eβξ) 1 � α < β � 7 ξ ∈ Ca.

These operators are generators of the left spinor representation of the group Spin(8), i.e. they
are the images of some base of the Lie algebra spin(8) under this representation. Similarly,
operators

Rα : ξ �→ 1
2ξeα α = 1, . . . , 7 ξ ∈ Ca,

Rα,β : ξ �→ 1
2 (ξeβ)eα 1 � α < β � 7 ξ ∈ Ca

are generators of the right spinor representation of the group Spin(8). All these operators are
skew symmetric w.r.t. the scalar product in Ca.

The formulae above define operators Lα,β, Rα,β also for 1 � β < α � 7. If Ca′ is the
space of pure imaginary octonions, u ∈ Ca′, ξ ∈ Ca, then due to the alternativity of Ca:

ξu · u = ξu2 = −ξ |u|2 = −|u|2ξ = u · uξ.

For u = eα + eβ, 1 � α < β � 7 it holds that

−2ξ = −ξ |eα + eβ |2 = ξ(eα + eβ) · (eα + eβ) = ξeα · eα + ξeα · eβ + ξeβ · eα + ξeβ · eβ

= −ξ + ξeα · eβ + ξeβ · eα − ξ

and ξeα · eβ + ξeβ · eα = 0. Similarly, eα · eβξ + eβ · eαξ = 0. For 0 � i, j � 7, i �= j we can
write more general formulae, useful in the following:

ei · ej ξ = −ēj · ēiξ ξei · ej = −ξ ēj · ēi ξ ∈ Ca. (47)

In particular, we have Lα,β = −Lβ,α, Rα,β = −Rβ,α, 1 � α, β � 7, α �= β.
For the element g ∈ Spin(8) denote by gL, gR and gV its images under left spinor, right

spinor and vector representation, respectively. The following proposition is a version of the
triality principle for the group Spin(8).3

Proposition 2 ([17]). For any element g ∈ Spin(8) it holds that

gV (ξη) = gL(ξ) · gR(η) ξ, η ∈ Ca. (48)

Conversely, if A,B,C are orthogonal operators Ca �→ Ca such that

A(ξη) = B(ξ) · C(η)

for any ξ, η ∈ Ca, then there exists unique g ∈ Spin(8) such that A = gV , B = gL,C = gR .

From equation (48) we obtain its infinitesimal analogues:

Vi(ξη) = Li(ξ) · η + ξ · Ri(η) i = 1, . . . , 7 (49)

Vi,j (ξη) = Li,j (ξ) · η + ξ · Ri,j (η) 1 � i < j � 7 ξ, η ∈ Ca (50)

where Vi and Vi,j are generators of the vector representation of the group Spin(8).

3 Other versions of this principle are in [16].
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10.2. The Jordan algebra h3(Ca)

The Hermitian conjugation A �→ A∗ for a square matrix with octonion entries is defined
as the composition of octonionic conjugation and transposition of A, similar to complex or
quaternion cases. A matrix A is called Hermitian iff A∗ = A. The simple exceptional Jordan
algebra h3(Ca) consists of all Hermitian 3 × 3 matrices with octonion entries. It is endowed
with the Jordan commutative multiplication:

X ◦ Y = 1
2 (XY + YX) X, Y ∈ h3(Ca).

This multiplication satisfies the identity (X2 ◦ Y ) ◦ X = X2 ◦ (Y ◦ X) which is the condition
for an algebra with commutative (but not necessarily associative) multiplication to be Jordan.
The Jordan algebra h3(Ca) is 27 dimensional over R. Its every element can be represented in
the form

X = a1E1 + a2E2 + a3E3 + X1(ξ1) + X2(ξ2) + X3(ξ3) (51)

where

E1 =

1 0 0

0 0 0
0 0 0


 E2 =


0 0 0

0 1 0
0 0 0


 E3 =


0 0 0

0 0 0
0 0 1




X1(ξ) =

0 0 0

0 0 ξ

0 ξ̄ 0


 X2(ξ) =


0 0 ξ̄

0 0 0
ξ 0 0


 X3(ξ) =


0 ξ 0

ξ̄ 0 0
0 0 0




ai ∈ R, ξi ∈ Ca, i = 1, 2, 3. It is easy to show that

Ei ◦ Ej =
{
Ei if i = j

0 if i �= j

Ei ◦ Xj(ξ) =
{

0 if i = j
1
2Xj(ξ) if i �= j

Xi(ξ) ◦ Xj(η) =
{
(ξ, η)(E − Ei) if i = j
1
2Xi+j (ξη) if j ≡ i + 1 mod 3

(52)

where E = E1 + E2 + E3 is the unit matrix. In the last formula all indices are considered
modulo 3.

The group of all automorphisms of the Jordan algebra h3(Ca) is the exceptional simple
compact 52-dimensional real Lie group F4. This group conserves the following bilinear and
trilinear functionals: A(X, Y ) = Tr(X ◦ Y ),B(X, Y,Z) = A(X ◦ Y,Z). Conversly, every
linear operator h3(Ca) �→ h3(Ca), conserving these two functionals, lies in F4.

Define the norm of the element (51) as ‖X‖2 = A(X,X) = ∑3
i=1

(
a2

i + 2|ξ |2). The last
equality is the consequence of (52).

Theorem 2 (Freudenthal). For any X ∈ h3(Ca) there exists an automorphism � ∈ F4, such
that

�X = λ1E1 + λ2E2 + λ3E3 (53)

where λ1 � λ2 � λ3, and the form (53) is uniquely determined by X. Two elements from
h3(Ca) lie on the same orbit of F4 iff their diagonal forms (53) are the same.
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10.3. The octonionic projective plane P2(Ca)

Elements X ∈ h3(Ca) satisfying conditions

X2 = X Tr X = 1 (54)

form the octonionic projective plane P2(Ca), which is a 16-dimensional real manifold.
Automorphisms of h3(Ca) conserve equations (54) and the group F4 acts on P2(Ca). From
the Freudenthal theorem and equations (54) it follows that every element of P2(Ca) can be
transformed by an appropriate element of F4 to the element E1. Thus P2(Ca) is a homogeneous
space of the group F4 and calculations in [17] (lecture 16) shows that the stationary subgroup
of every point X ∈ P2(Ca) is isomorphic to the group Spin(9).

Let

X = (1 + a1)E1 + a2E2 + a3E3 + X1(ξ1) + X2(ξ2) + X3(ξ3) ∈ P2(Ca)

where ai, |ξi |, i = 1, 2, 3 are tending to zero. Then due to (52) we have

X ◦ X = (1 + 2a1)E1 + X2(ξ2) + X3(ξ3) + o

(
3∑

i=1

(
a2

i + |ξ |2)
)

and the equality X ◦ X = X implies a1 = a2 = a3 = 0, ξ1 = 0. It means that we can identify
the tangent space TE1 P2(Ca) with the set {X2(ξ2) + X3(ξ3)|ξ1, ξ2 ∈ Ca}.

Let K ⊂ F4 be the stationary subgroup corresponding to the point E1 and acting by
automorphisms in the space TE1 P2(Ca) � {X2(ξ2) + X3(ξ3)|ξ1, ξ2 ∈ Ca}. Let K0 be
the stationary subgroup of K, corresponding to the element X3(1) ∈ TE1 P2(Ca).

According to section 4 we calculate the K0-action on TE1 P2(Ca). For any element
X ∈ h3(Ca) let Ann X := {Y ∈ h3(Ca)|Y ◦ X = 0}. Being an automorphism of the algebra
h3(Ca), an element � ∈ K0 conserves the space Ann X3(1). It follows from (52) that

Ann X3(1) = {a(E1 − E2) + bE3 + X3(ξ)|a, b ∈ R, ξ ∈ Ca′}.
Let �(E1 − E2) = a(E1 − E2) + bE3 + X3(ξ), then we have

1 = A(E1 − E2, E1) = A(�(E1 − E2),�(E1))

= A(a(E1 − E2) + bE3 + X3(ξ), E1) = a.

This implies �(E1 − E2) = E1 − E2 + bE3 + X3(ξ) and the equality ‖E1 − E2‖ =
‖�(E1 − E2)‖ gives b = 0, ξ = 0. This means that �(E2) = E2 and therefore
�(E3) = �(E − E1 − E2) = E − E1 − E2 = E3. Thus the group K0 conserves elements
E1, E2, E3.

Let K ′ be the subgroup of F4 conserving element E1, E2, E3. We see that K0 ⊂ K ′ ⊂ K .
Since Ann E1 = {a2E2 + a3E3 + X1(ξ), a1, a2 ∈ R, ξ ∈ Ca}, then the group K ′ maps
X1(ξ) �→ X1(ξ̃ ) and similarly Xi(ξi) �→ Xi(ξ̃i), i = 1, 2, 3.

Let �i : Ca �→ Ca, i = 1, 2, 3 be orthogonal operators such that �Xi(ξi) = Xi(�i(ξi))

for � ∈ K ′. The last formula in (52) implies

X3(�3(ξη)) = �(X3(ξη)) = 2�(X1(ξ) ◦ X2(η)) = 2�(X1(ξ)) ◦ �(X2(η))

= 2X1(�1(ξ)) ◦ X2(�2(η)) = X3(�1(ξ)�2(η)).

It gives

�1(ξ)�2(η) = �3(ξη) (55)

for � ∈ K ′, ξ, η ∈ Ca.
Denote by Cai, i = 1, 2, 3 the domains for the operators �i, i = 1, 2, 3. Then

TE1 P2(Ca) � Ca2 ⊕ Ca3.
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Formula (55) and proposition 2 imply

Proposition 3. Operators �1 and �2 are respectively left and right spinor representations of
the group Spin(8) � K ′ and the composition ι ◦�3 ◦ ι is the vector representation of Spin(8).

The group Spin(8) is the universal (double) covering of the group SO(8) and their Lie
algebras spin(8) and so(8) are isomorphic.

Now consider representations of the Lie algebra k′ of the group K ′ in Cai, i = 1, 2, 3. All
these representations are faithful. For A ∈ k′ denote by A(i) the corresponding skew-symmetric
operator in Cai, i = 1, 2, 3. From (55) we obtain the following infinitesimal analogue of the
triality principle:

A(1)(ξ) · η + ξ · A(2)(η) = A(3)(ξη). (56)

From (49) and (50) we obtain that if A(1) = Li (respectively A(1) = Li,j ) then A(2) =
Ri,A

(3) = ι ◦ Vi ◦ ι (respectively A(2) = Ri,j , A
(3) = ι ◦ Vi,j ◦ ι).

Let us identify the algebra k′ with its vector representation in Ca3, in particular we put
A ≡ A(3) for A ∈ k′. By � denote the inclusion k′ into the Lie algebra f4 corresponding to the
group F4.

By definition, the Lie algebra k0 of the group K0 ⊂ K ′ consists of the skew-symmetric
operators in Ca3, transforming 1 ∈ Ca3 into 0. The group K0 is isomorphic to Spin(7), acting
in Ca1 by the left spinor representation, in Ca2 by the right spinor representation (equivalent
for Spin(7) to the left one, see (63)), and in Ca′

3 by the vector representation, which are
restrictions of analogous representations of K ′ � Spin(8).

Let m be the space of 3 × 3 semi-Hermitian matrices with octonion entries and the zero
trace. Let

Y1(ξ) =

0 0 0

0 0 ξ

0 −ξ̄ 0


 Y2(ξ) =


0 0 −ξ̄

0 0 0
ξ 0 0




Y3(ξ) =

 0 ξ 0

−ξ̄ 0 0
0 0 0


 ξ ∈ Ca

be elements from m and the linear subspace m0 ⊂ m consists of elements of the form

3∑
i=1

Yi(ξi) ξi ∈ Ca.

From [17] (lecture 16) we can extract the following proposition:

Proposition 4. For Y ∈ m the linear operator ad Y : h3(Ca) �→ h3(Ca), acting according to
the formula ad Y (X) = YX − XY,X ∈ h3(Ca) is the differentiation of the algebra h3(Ca).
Thus the space m is contained in f4. There is the expansion into the direct sum of linear spaces

f4 � k′ ⊕ m0

with the following commutator relations:

[�A, ad Yi(ξ)] = ad Yi(A
(i)ξ ) i = 1, 2, 3 (57)

[ad Yi(ξ), ad Yj (η)] =
{
�Ci,ξ,η if j = i

ad Yi+2(−ξη) if j = i + 1
(58)
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where A ≡ A(3) ∈ k′, ξ, η ∈ Ca, operators A(i) are from (56), the indices in the last equation
are considered modulo 3 and semi-Hermitian operators Ci,ξ,η : Ca3 �→ Ca3, i = 1, 2, 3 are
given by the following formulae:

C1,ξ,η : ζ �→ ζ ξ · η̄ − ζη · ξ̄

C2,ξ,η : ζ �→ η̄ · ξζ − ξ̄ · ηζ, ζ ∈ Ca (59)

C3,ξ,η : ζ �→ 4(ξ, ζ )η − 4(η, ζ )ξ.

The action of operators �Ci,ξ,η on the spaces Ca1 and Ca2 is obtained from (59) by the
cyclic permutation of indices:

�C1,ξ,η|Ca1 : ζ �→ 4(ξ, ζ )η − 4(η, ζ )ξ

�C2,ξ,η|Ca1 : ζ �→ ζ ξ · η̄ − ζη · ξ̄

�C3,ξ,η|Ca1 : ζ �→ η̄ · ξζ − ξ̄ · ηζ (60)

�C1,ξ,η|Ca2 : ζ �→ η̄ · ξζ − ξ̄ · ηζ

�C2,ξ,η|Ca2 : ζ �→ 4(ξ, ζ )η − 4(η, ζ )ξ

�C3,ξ,η|Ca2 : ζ �→ ζ ξ · η̄ − ζη · ξ̄ .

Note that in [17] (lecture 16) analogues of formulae (55), (57) and the last formula (52) contain
errors.

11. Generators of algebras Diff(P2(Ca)S) and Diff(H2(Ca)S)

Now we specify the construction from section 4 for the space M = P2(Ca)S.

11.1. The special base in a ⊕ pλ ⊕ kλ ⊕ p2λ ⊕ k2λ

It is easily seen that

[Y1(ξ), E1] = 0 [Y2(ξ), E1] = X2(ξ) [Y3(ξ), E1] = −X3(ξ) ξ ∈ Ca

so we can identify the space TE1 P2(Ca) with the space {Y2(ξ)+Y3(η)|ξ, η ∈ Ca} ⊂ m0. From
(57) we obtain that the expansion

{Y2(ξ) + Y3(η)|ξ, η ∈ Ca} = {Y3(ξ)|ξ ∈ R} ⊕ {Y2(ξ)|ξ ∈ Ca} ⊕ {Y3(ξ)|ξ ∈ Ca′}
is AdK0 -invariant and by comparison with sections 3 and 4 we can put

a := {Y3(ξ)|ξ ∈ R} pλ := {Y2(ξ)|ξ ∈ Ca} p2λ := {Y3(ξ)|ξ ∈ Ca′}.
Let y = (

E1,
1
2X3(1)

) ∈ P2(Ca)S, where 1
2X3(1) ∈ SE1 . We have TyP2(Ca)S =

TE1 P2(Ca) ⊕ T 1
2 X3(1)SE1 and

T 1
2 X3(1)SE1 � {X2(ξ)|ξ ∈ Ca} ⊕ {X3(ξ)|ξ ∈ Ca′}.

Since ad Y1(ξ)(X3(1)) = −X2(ξ̄ ), ξ ∈ Ca, the space {X2(ξ)|ξ ∈ Ca} ⊂ T 1
2 X3(1)SE1 is

identified with the space {Y1(ξ)|ξ ∈ Ca} ⊂ m0. Since dimR{Y1(ξ)|ξ ∈ Ca} = 8 = dimR pλ

we denote kλ := {Y1(ξ)|ξ ∈ Ca}. Thus m0 = a ⊕ pλ ⊕ p2λ ⊕ kλ.
Denote by Aij ∈ k′, i �= j the generators of the rotation in the two-dimensional plane,

containing elements ei, ej ∈ Ca3, such that Aij ej = ei, Aij ei = −ej . The operators
Aij , 1 � i < j � 7 are the base of the algebra k0. Similar to the quaternion case the
subspace q of the algebra k′ with the base A0α =: Aα, α = 1, . . . , 7 is AdK0 -invariant and is
identified through the K0-action on TyP2(Ca)S with the space {X3(ξ)|ξ ∈ Ca′} ⊂ T 1

2 X3(1)SE1 .
Therefore, we define k2λ := q.
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Lemma 1. It holds that

A(1)
α = Lα A(2)

α = Rα A
(1)
αβ = Lβ,α A

(2)
αβ = Rβ,α

C3,eα,eβ
= 4Aβ,α C3,e0,eα

= −4Aα α, β = 1, . . . , 7 α �= β

Proof. From (56) we have

A(3)(ξ) = A(1)(ξ) + ξA(2)(1).

Let A(1) = Lα , then A(2) = Rα and A(3)(ek) = 1
2 (eαēk + ēkeα) = − 1

2 (ekeα + eαek). If
1 � k �= α, then ekeα = −eαek and A(3)(ek) = 0. Therefore, A(3) = Aα , since
A(3)(1) = −eα,A(3)(eα) = 1. This proves A(1)

α = Lα,A(2)
α = Rα .

Let now A(1) = Lβ,α , then A(2) = Rβ,α and A(3)(ek) = 1
2 (eβ · eαēk + ēk · eαeβ) =

1
2 (ekeα · eβ + eβeα · ek). It is easy to verify by direct computation that if α = 1, β = 2

then A(3)(ek) = 0, for k �= 1, 2 and A(3)(e1) = −e2, A
(3)(e2) = e1. Thus L

(3)
β,α = A12.

Therefore, L
(3)
β,α = Aαβ for any other pair of eα, eβ , since the group G2 of automorphisms

of Ca acts transitively on any pair of imaginary units [17] (lecture 15). This proves
A

(1)
αβ = Lβ,α, A

(2)
αβ = Rβ,α .

The last two equalities of this lemma are obvious. �

Let us summarize these reasonings in the following proposition:

Proposition 5. Let

� := 1
2 ad Y3(e1) e2λ,α := 1

2 ad Y3(eα) f2λ,α := �Aα

eλ,i := − 1
2 ad Y2(ēi) fλ,i := 1

2 ad Y1(ei) Ãαβ := �Aαβ

where Latin indices vary from 0 to 7 and Greek ones (except λ) vary from 1 to 7. We have the
following commutator relations:

[�, e2λ,α] = −f2λ,α [�, f2λ,α] = e2λ,α [�, eλ,i] = − 1
2fλ,i [�, fλ,i] = 1

2eλ,i

[�, Ãαβ] = 0 [e2λ,α, e2λ,β ] = Ãβα [e2λ,α, f2λ,β ] = −δαβ� [f2λ,α, f2λ,β ] = Ãβα

[e2λ,α, eλ,j ] = 1
2fλ,eαej

[e2λ,α, fλ,j ] = 1
2eλ,eαej

[f2λ,α, eλ,j ] = − 1
2eλ,eαej

[f2λ,α, fλ,j ] = 1
2fλ,eαej

[eλ,i , eλ,j ] = 1
4�C2,ēi ,ēj

= 1
2f2λ,ei ēj

+ 1
2�C̃2,i,j i �= j

[fλ,i , fλ,j ] = 1
4�C1,ei ,ej

= − 1
2f2λ,ei ēj

+ 1
2�C̃1,i,j i �= j

[eλ,i , fλ,j ] =
{

− 1
2� i = j

− 1
2e2λ,ei ēj

i �= j

where we denote fλ,eαej
:= fλ,i if eαej = ei and fλ,eαej

:= −fλ,i if eαej = −ei . We use
analogous notation for eλ,i , e2λ,γ , f2λ,γ . Here operators C̃l,i,j , l = 1, 2, i �= j are in k0 and
act as

C̃1,i,j (ek) = ekei · ēj ek �= 1,±ei ēj C̃1,i,j (ek) = 0 ek = 1,±ei ēj

C̃2,i,j (ek) = ej · ēiek ek �= 1,±ei ēj C̃2,i,j (ek) = 0 ek = 1,±ei ēj .

The chosen bases �, eλ,i , e2λ,α, fλ,i , f2λ,α in spaces a, pλ, p2λ, kλ, k2λ correspond to
proposition 1.

Proof. The commutator relations are easy consequences of (57), (58), lemma 1 and relations
in the algebra k′ � so(8). For example, let us calculate the commutator [f2λ,α, eλ,j ]. Actually,
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from (57) and lemma 1 we obtain

[f2λ,α, eλ,j ] = −[
�Aα, 1

2 ad Y2(ēj )
] = − 1

2 ad Y2
(
A(2)

α ēj

) = − 1
2 ad Y2(Rαēj )

= − 1
4 ad Y2(ēj eα) = 1

4 ad Y2(ēj ēα) = − 1
2eλ,eαej

.

Similar calculations are also valid for [f2λ,α, fλ,j ].
Now, let us calculate [eλ,i , eλ,j ], i �= j . From (58) we obtain

[eλ,i , eλ,j ] = 1
4 [ad Y2(ēi), ad Y2(ēj )] = 1

4�C2,ēi ,ēj
i �= j.

From (47) and (59) we obtain
1
2C2,ēi ,ēj

(ek) = 1
2 (ej · ēiek − ei · ēj ek) = −ei · ēj ek.

In particular,
1
2C2,ēi ,ēj

(1) = −ei ēj
1
2C2,ēi ,ēj

(ei ēj ) = −(ei · ēj )
2 = 1

so
1
2�C2,ēi ,ēj

= �Aei ēj
+ �C̃2,i,j = f2λ,ei ēj

+ �C̃2,i,j

where C̃2,i,j ∈ k0 and

C̃2,i,j (ek) = ej · ēiek ek �= 1,±ei ēj C̃2,i,j (ei ēj ) = C̃2,i,j (1) = 0.

Similar calculations are also valid for [fλ,i , fλ,j ]. �

11.2. Invariants in S(a ⊕ pλ ⊕ kλ ⊕ p2λ ⊕ k2λ)

Invariant operators D0, . . . , D6, corresponding to some K0-invariants in S(a⊕pλ ⊕ kλ ⊕p2λ ⊕
k2λ) are already constructed in section 4. Here we shall construct other independent invariants
of K0-action on S(a ⊕ pλ ⊕ kλ ⊕ p2λ ⊕ k2λ) or equivalently from S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ), since
a is an invariant one-dimensional space, and corresponding invariant differential operators.

An element � ∈ K ′ is from K0 ⊂ K ′ iff �3(1) = 1 and then �3(ξ) = ξ for any
ξ ∈ R ⊂ Ca3. Hereafter in this section � ∈ K0. The orthogonality of �i means that

Re(�i(ξ)�i(η)) = Re(ξ η̄) ξ, η ∈ Cai. (61)

In particular, �i(ξ)�i(ξ) = |ξ |2 and

�i(ξ)−1 = �i(ξ)/|ξ |2. (62)

For η = ξ̄ from (55) we obtain �1(ξ)�2(ξ̄ ) = �3(|ξ |2) = |ξ |2, so from (62) �1(ξ) =
|ξ |2�2(ξ̄ )−1 = �2(ξ̄ ) and

�1 = ι ◦ �2 ◦ ι. (63)

Let Q1(ξ, η) = Re(ξη), ξ ∈ Ca1, η ∈ Ca2. From (61) and (63) we get

Q1(�1(ξ),�2(η)) = Re(�1(ξ)�2(η)) = Re(�1(ξ)�1(η̄)) = Re(ξ η̄) = Q1(ξ, η).

Thus, Q1(ξ, η) is invariant under the K0-action.
From proposition 3, it follows that �1 = gL,�2 = gR,�3 = ι ◦ gV ◦ ι = gV , where

gL, gR, gV are respectively left spinor, right spinor and vector representation of the group
K0 � Spin(7), since ι|Ca′

3
= −id. Besides, the K0-action on Im(ξη), ξ ∈ Ca1, η ∈ Ca2

equals gV , so Q2(ξ, η, ζ ) := Re(Im(ξη)ζ ) is invariant under K0-action for ζ ∈ Ca′
3.

According to section 4 the K0-action on pλ is equivalent to the K0-action on kλ and
the K0-action on p2λ is equivalent to the K0-action on k2λ. This equivalence is established
by the correspondence of bases eλ,i ↔ fλ,i and e2λ,α ↔ f2λ,α . It is also confirmed by the
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formulae [Y2(ξ), E1] = X2(ξ), ad Y1(ξ) (X3(1)) = −X2(ξ̄ ), ξ ∈ Ca and (63). Therefore the
analogue of Im(ξη), ξ ∈ Ca1, η ∈ Ca2 in S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ) ⊗ Ca is∑

i �=j

fλ,ieλ,ēj
⊗ eiej .

Thus, after the identification p2λ � Ca′
3 the invariant Q2 gives the invariant from

S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ)∑
i �=j

fλ,ieλ,ēj
e2λ,eiej

=
∑
i �=j

fλ,ieλ,j e2λ,ei ēj
.

Therefore, we can define the invariant differential operator:

D7 = −1

4

∑
i �=j

{{fλ,i , eλ,j }, e2λ,ei ēj

} = 1

4

∑
i �=j

{{fλ,j , eλ,i}, e2λ,ei ēj

}
.

Similarly, the identification k2λ � Ca′
3 gives the invariant differential operator:

D8 = −1

4

∑
i �=j

{{fλ,i , eλ,j }, f2λ,ei ēj

} = 1

4

∑
i �=j

{{fλ,j , eλ,i}, f2λ,ei ēj

}
.

It is clear that equation (55) remains valid after the cyclic permutation of indices 1, 2, 3:

�3(ζ )�1(ξ) = �2(ζ ξ) �2(η)�3(ζ ) = �1(ηζ )

ξ ∈ Ca1 η ∈ Ca2 ζ ∈ Ca′
3.

(64)

Define

P(ξ, η, ζ1, ζ2) := Re(ζ1ξ · ηζ2) ζ1, ζ2 ∈ Ca′
3.

The function P(ξ, η, ζ1, ζ2) is invariant w.r.t. the K0-action, since due to (64), (63) and (61):

P(�1(ξ),�2(η),�3(ζ1),�3(ζ2)) = Re(�3(ζ1)�1(ξ) · �2(η)�3(ζ2))

= Re(�2(ζ1ξ)�1(ηζ2)) = Re
(
�1(ζ1ξ)�1(ηζ2)

) = Re
(
ζ1ξ · ηζ2

)
= P(ξ, η, ζ1, ζ2).

Functions P(ξ, η, ζ1, ζ2) and P(ξ, η, ζ2, ζ1) are not independent. Indeed, the corollary
15.12 in [18] gives

Re(ab · c) = Re(bc · a) = Re(ca · b) = Re(a · bc) = Re(b · ca) = Re(c · ab)

a, b, c ∈ Ca.

Therefore, using the Moufang identity (46) we obtain

P(ξ, η, ζ, ζ ) = Re(ζ · ξη · ζ ) = Re(ζ 2 · ξη) = −Re(|ζ |2ξη) = −|ζ |2 Re(ξη)

= −|ζ |2Q1(ξ, η) (65)

which means that for ζ1 = ζ2 = ζ invariant P(ξ, η, ζ, ζ ) is expressed through invariants of the
second order. Using the polarization of (65) w.r.t. ζ , which means the substitution ζ = ζ1 +ζ2,
we get

P(ξ, η, ζ1, ζ2) + P(ξ, η, ζ2, ζ1) = −2〈ζ1, ζ2〉Q1(ξ, η).

This means the dependence of two invariants P(ξ, η, ζ1, ζ2), P(ξ, η, ζ2, ζ1) and invariants
Q1(ξ, η), 〈ζ1, ζ2〉 is of the second order. The last two invariants correspond to operators D3

and D6.
For constructing the invariant differential operator D9 we shall use the invariant function

P(ξ, η, ζ1, ζ2) − P(ξ, η, ζ2, ζ1).
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Using
∑

k eλ,ēk
⊗ ek as the analogue of η we get the corresponding expression from

S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ):∑
i �=j
j �=k

(
f2λ,ej ēi

fλ,ieλ,ēk
e2λ,ēk ēj

− e2λ,ej ēi
fλ,ieλ,ēk

f2λ,ēk ēj

)

=
∑
i �=j
j �=k

(
e2λ,ei ēj

fλ,ieλ,kf2λ,ek ēj
− f2λ,ei ēj

fλ,ieλ,ke2λ,ek ēj

)

since for i �= j it holds that ej ēi = −ej ēi = −ei ēj .
Define the corresponding invariant differential operator as

D9 = 1

8

∑
i �=j
j �=k

({{
e2λ,ei ēj

, fλ,i

}
,
{
f2λ,ek ēj

, eλ,k

}} − {{
e2λ,ei ēj

, eλ,i

}
,
{
f2λ,ek ēj

, fλ,k

}})
.

Let us show that there are exactly nine independent K0-invariants in S(pλ⊕kλ⊕p2λ⊕k2λ).
Indeed, dim(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ) = 8 + 8 + 7 + 7 = 30 and dim K0 = dim Spin(7) = 21.

Therefore, the codimension of K0-orbits in pλ ⊕ kλ ⊕ p2λ ⊕ k2λ is at least 30 − 21 = 9 and
there should be at least nine independent K0-invariants in S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ).

On the other hand, it is obvious that the stationary subgroup, corresponding to a point in a
general position, of the group Spin(7), acting on p2λ⊕k2λ by gV ⊕gV , is Spin(5). Therefore, the
dimension of general Spin(7)-orbits in p2λ⊕k2λ is dim Spin(7)−dim Spin(5) = 11. The group
Spin(5) is isomorphic to UH(2), see [18], proposition 5.1. In section 6 the six independent
invariants of the diagonal UH(2)-action on H2 ⊕ H2 � pλ ⊕ kλ were found, so general orbits
of the last action are ten dimensional, since dimR(H2 ⊕H2)− 6 = 10. Thus, general Spin(7)-
orbits in pλ ⊕ kλ ⊕ p2λ ⊕ k2λ are 11 + 10 = 21 dimensional, their codimension is 9 and there
are exactly nine functionally independent invariants of Spin(7)-action on pλ ⊕ kλ ⊕ p2λ ⊕ k2λ.

It is not known if there are any other invariants of this action, which are polynomial
in eλ,i , fλ,i , e2λ,α, f2λ,α and are not polynomial in D1, . . . , D9. Such invariants should be
connected with D1, . . . , D9 by algebraic equation of a degree greater than 1. In the case of
Pn(H)S, n � 3 there is the invariant D10 which does not admit the polynomial expression in
D1, . . . , D9, but D2

10 does admit such an expression. The operator D10 arises in commutative
relations of D1, . . . , D9.

In the next section it is found that all commutators of operators D1, . . . , D9 in the
octonionic case are polynomial in D1, . . . , D9. Therefore it seems probable that there is no
analogue of D10 in the octonionic case.

It is easily verified that automorphisms ζα, σ acts on D7,D8,D9 as

ζα(D7) = cos(α)D7 − sin(α)D8 ζα(D8) = sin(α)D7 + cos(α)D8

ζα(D9) = D9 σ(D7) = D7 σ(D8) = −D8 σ(D9) = D9.

Similar to the previous sections, in order to get the generators of the algebra Diff(H2(Ca)S)

one can use remark 1 and make the formal substitution:

� → i� eλ,i → ieλ,i fλ,i → fλ,i e2λ,α → ieλ,α fλ,α → fλ,α.

This substitution produces the following substitution for the generators D0, . . . , D10:

D0 → iD̄0 D1 → −D̄1 D2 → D̄2 D3 → iD̄3 D4 → −D̄4

D5 → D̄5 D6 → iD̄6 D7 → −D̄7 D8 → iD̄8 D9 → −D̄9.
(66)

The operators D̄0, . . . , D̄9 generate the algebra Diff(H2(Ca)S).
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12. Relations in algebras Diff(P2(Ca)S) and Diff(H2(Ca)S)

Below there are all 45 commutative relations of operators D0, . . . , D9. An example of a
calculation of such a relation is given in appendix A. All methods described in section 7 for
calculating commutative relations were used in this case. Besides, the numeration of the base
elements eλ,i , fλ,i , e2λ,α, fλ,α by octonionic units ei, i = 0, . . . , 7 is very convenient

[D0,D1] = −D3 [D0,D2] = D3 [D0,D3] = 1
2 (D1 − D2) [D0,D4] = −2D6

[D0,D5] = 2D6 [D0,D6] = D4 − D5 [D0,D7] = −D8 [D0,D8] = D7

[D0,D9] = 0 [D1,D2] =−{D0,D3} − 2D7 [D1,D3] =− 1
2 {D0,D1} + D8 + 10D0

[D1,D4] = 2D7 [D1,D5] = 0 [D1,D6] = D8

[D1,D7] = 1
2 {D1,D2 − D4}−D9− 1

2 {D3,D6}−D2
3 −5D2

0 − 3
32D1 − 283

32 D2 + 19
2 D4 − 1

2D5

[D1,D8] = − 1
2 {D3,D5} − 1

2 {D1,D6} + 10D6 + 35
4 D3

[D1,D9] = 1
2 {D5,D7} − 1

2 {D6,D8} − 189
32 {D0,D3} − 169

16 D7

[D2,D3] = 1
2 {D0,D2} + D8−10D0

[D2,D4] = −2D7 [D2,D5] = 0 [D2,D6] = −D8

[D2,D7] =− 1
2 {D2,D1−D4} + D9− 1

2 {D3,D6} + D2
3 + 5D2

0 + 3
32D2 + 283

32 D1 − 19
2 D4 + 1

2D5

[D2,D8] = 1
2 {D2,D6} − 1

2 {D3,D5} + 35
4 D3 − 10D6

[D2,D9] = − 1
2 {D5,D7} + 1

2 {D6,D8} + 189
32 {D0,D3} + 169

16 D7, [D3,D4] = 0

[D3,D5] = 2D8 [D3,D6] = D7 [D3,D7] = − 1
4 {D1 + D2,D6} + 10D6

[D3,D8] = 1
2 {D1,D2} − 1

4 {D1 + D2,D5}−D9−D2
3 − 5D2

0 − 143
32 (D1 + D2) − 1

2D4 + 19
2 D5

[D3,D9] = 1
2 {D4,D8} − 1

2 {D6,D7} + 189
64 {D0,D1 − D2} − 169

16 D8

[D4,D5] = −2{D0,D6} [D4,D6] = −{D0,D4} + 35
2 D0

[D4,D7] = 1
2 {D1 − D2,D4} + 35

4 (D2 − D1) [D4,D8] = 1
2 {D1 − D2,D6} − {D0,D7}

[D4,D9] = −9{D0,D6} [D5,D6] = {D0,D5} − 35
2 D0

[D5,D7] = {D3,D6} + {D0,D8} [D5,D8] = {D3,D5} − 35
2 D3 [D5,D9] = 9{D0,D6}

[D6,D7] = 1
4 {D1 − D2,D6} + 1

2 {D3,D4} + 1
2 {D0,D7} − 35

4 D3

[D6,D8] = 1
4 {D1 − D2,D5} + 1

2 {D3,D6} − 1
2 {D0,D8} + 35

8 (D2 − D1)

[D6,D9] = 9
2 {D0,D4 − D5}

[D7,D8] = − 1
4 {D0, {D1,D2}} + 1

2

{
D0,D

2
3

}
+ 1

2 {D0,D9} + 1
4 {D1 − D2,D8} + 1

4 {D0,D5}
+ 283

64 {D0,D1 + D2} − 175
2 D0 − 1

2 {D3,D7} + 5D3
0 + 1

4 {D0,D4}
[D7,D9] = 1

4 {{D0,D7},D6} + 1
8 {D2 − D1, {D4,D5}}

− 1
4 {{D0,D4},D8} + 1

4

{
D1 − D2,D

2
6

}− 1
2 {D0,D8} + 25

32 {D3,D6}
+ 185

64 {D1 − D2,D4} + 17
8 {D1 − D2,D5} + 35×181

128 (D2 − D1)
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[D8,D9] = − 1
4 {{D0,D6},D8} − 1

4 {D3, {D4,D5}} + 1
4 {{D0,D7},D5} + 1

2

{
D3,D

2
6

}
+ 169

32 {D3,D5} + 45
64 {D1 − D2,D6} + 37

8 {D3,D4} + 5
8 {D0,D7} − 35×177

64 D3.

Using these relations it is not difficult to verify that the operator D∗ = D2
0 + D1 + D2 +

D4 + D5 lies in the centre of the algebra Diff(Pn(H)S) in accordance with section 4.
Using substitution (66) one can obtain from the above relations the commutative relations

for the algebra Diff(H2(Ca)S).

13. Connection of algebras Diff(MS) with the two-body problem

In [5] an expression of the quantum two-body Hamiltonian with a central potential V (ρ) on an
arbitrary two-point homogeneous space M through radial differential operators and generators
of an isometry group was found. Using the notation of the present paper we can write these
expressions in the following way:

Ĥ = L2 + {L1,D0} + a0D
2
0 +

6∑
i=1

aiDi + V (ρ)

for M = Pn(H) and M = P2(Ca);

Ĥ = L2 + {L1,D0} + a0D
2
0 +

3∑
i=1

aiDi + a4D
2
4 + a5D

2
5 + a6{D4,D5} + V (ρ)

for M = Pn(C) and

Ĥ = L2 + {L1,D0} + a0D
2
0 +

3∑
i=1

aiDi + V (ρ)

for M = Pn(R), Sn, n � 3 and

Ĥ = L2 + {L1,D0} + a0D
2
0 + a1D

2
1 + a2D

2
2 +

1

2
a3{D1,D2} + V (ρ),

for M = P2(R), S2.
Here ρ is the distance between particles, Li, i = 1, 2 is some ordinary differential operator

of the ith order w.r.t. ρ, a0 = const, ai, i = 1, . . . , 6 are some functions of ρ and masses of
particles. The analogous expressions for noncompact spaces can be obtained by substitutions
Di → D̄i from above.

The main difference of these expressions from the Euclidean case is the presence of
noncommutative operators with coefficients depending on ρ. This difference makes the two-
body problem on M quite difficult. However, every common eigenfunction of generators
Di gives an isolated ordinary differential equation for a radial part of an eigenfunction for
Ĥ . Using this approach some exact spectral series for the two-body problem on Sn were
found for several potentials in [15]. For other two-point compact homogeneous spaces similar
calculations should be more difficult.

Appendix A. Calculation of some commutative relations

In this appendix we shall illustrate the main ideas of calculating some commutative relations.
Let us start from commutative relations (24) from section 7. We shall obtain some relations
requiring the minimal calculations.
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Let operators D0, . . . , D10 be defined as in section 6. First let us consider the commutator
[D1,D4]. It is not difficult to verify the following equalities for elements A,B,C of an
arbitrary associative algebra:

[A, {B,C}] = {[A,B], C} + {B, [A,C]} (A.1)

{{A,B}, C} − {A, {B,C}} = [B, [A,C]] (A.2)

{{A,B}, C} = 2{B,C}A + {[A,B], C} + {[A,C], B} + [B, [A,C]]. (A.3)

In particular, when C = B, from (A.1) we have [A,B2] = {[A,B], B}. This implies

[D1,D4] = {[D1, ϒ12], ϒ12} + {[D1,�12],�12} + {[D1,�12],�12}.
Using (12) and (A.1) again, we obtain

[D1, ϒ12] = �1 [D1,�12] = �2 [D1,�12] = �3.

Thus

[D1,D4] = {�1, ϒ12} + {�2,�12} + {�3,�12} = 2D7. (A.4)

Using the permutation of coordinates z1 and z2 (or equivalently the automorphism σ ◦ ζπ ,
see section 6), we obtain from (A.4):

[D2,D4] = −2D7.

Suppose now we already know the expressions for commutators

[D0,D1], [D0,D3], [D0,D7], [D1,D2], [D1,D4], [D1,D5], [D1,D6], [D1,D7]

[D1,D8], [D2,D6], [D3,D4], [D3,D6], [D4,D5], [D4,D6], [D4,D8].

Then from the Jacobi identity and (A.1) we have

0 = [D1, [D8,D4]] + [D4, [D1,D8]] + [D8, [D4,D1]] = [
D1,

1
2 {D2 − D1,D6} + {D0,D7}

]
+ [D4, n(n − 1)D6 − 1

2 {D3,D5} + 3
4D3 − 1

2 {D1,D6}] − 2[D8,D7]

= 1
2 {[D1,D2],D6} − 1

2 {D1 − D2, [D1,D6]} + {[D1,D0],D7} + {D0, [D1,D7]}
+ n(n − 1)[D4,D6] − 1

2 {[D4,D3],D5} − 1
2 {D3, [D4,D5]} + 3

4 [D4,D3]

− 1
2 {D1, [D4,D6]} − 1

2 {[D4,D1],D6} − 2[D8,D7] = − 1
2 {{D3,D0},D6}

− {D4,D6} + 1
2 {D2 − D1,D8} + {D3,D7} + {D0, n(n − 1)D4 − 1

2 {D3,D6}
− 1

2 {D1,D4} + 3
8 (D1 − D2) + D9 + D10} − n(n − 1){D0,D4} + 3

2n(n − 1)D0

+ {D3, {D6,D0}} + 1
2 {D1, {D0,D4}} − 3

4 {D1,D0} + {D7,D6} − 2[D8,D7]

= 1
2 {D2 − D1,D8} + {D3,D7} + 3

8 {D0,D1 − D2} + {D0,D9 + D10}
+ 3

2n(n − 1)D0 − 3
4 {D0,D1} − 2[D8,D7].

In the last equality we took into account the formulae

{{D6,D0},D3} − {D6, {D0,D3}} + {{D0,D6},D3} − {D0, {D6,D3}} = [D0, [D6,D3]]

+ [D6, [D0,D3]] = −[D0,D7] − 1
2 [D6,D2 − D1] = D8 + 1

2 (−D8 − D8) = 0

{{D0,D4},D1} − {D0, {D4,D1}} = [D4, [D0,D1]] = [D4,D3] = 0

which are consequences of (A.2).
Thus we get

[D7,D8] = 1
4 {D1 − D2,D8} − 1

2 {D3,D7} + 3
16 {D0,D1 + D2} − 1

2 {D0,D9 + D10}
− 3

4n(n − 1)D0.



Algebras of invariant differential operators 7393

Now let us demonstrate the calculation modulo (U(g)k0)
K0 . Let D0, . . . , D3 are generators

of Diff
(
Sn

S

)
, n � 3, g = so(n + 1), k0 = so(n − 1),K0 = SO(n − 1). Then from (A.1) we

obtain

[D1,D3] = −8
n+1∑

k,l=3

({{�1k, [�1k, �1l]}, �2l} + {�1l , {�1k, [�1k, �2l]}})

= 4
n+1∑

k,l=3

({{�1k, �kl}, �2l} + δkl{�1l , {�1k, �12}})

= 4
n+1∑

k,l=3
k �=l

{{�kl,�1k}, �2l} + 4
n+1∑
k=3

{�1k, {�1k, �12}}. (A.5)

From formula (A.3) and commutative relations (12) one obtains

n+1∑
k,l=3
k �=l

{{�kl,�1k}, �2l} =
n+1∑

k,l=3
k �=l

(2{�1k, �2l}�kl + {[�kl,�1k], �2l} + {[�kl,�2l], �1k}

+ [�1k, [�kl,�2l]]) ≡
n+1∑

k,l=3
k �=l

(
−1

2
{�1l , �2l} +

1

2
{�2k, �1k}+

1

2
[�1k, �2k]

)
mod

(U(g)k0)
K0 = −1

4

n+1∑
k,l=3
k �=l

�12 = − (n − 1)(n − 2)

4
�12

= (n − 1)(n − 2)

8
D0.

Formula (A.2) gives

n+1∑
k=3

{�1k, {�1k, �12}} =
n+1∑
k=3

({{�1k, �1k}, �12} − [�1k, [�1k, �12]]) = 2

{
n+1∑
k=3

�2
1k, �12

}

− 1

2

n+1∑
k=3

[�1k, �2k] = −1

4
{D0,D1} +

1

4

n+1∑
k=3

�12 = −1

4
{D0,D1} − n − 1

8
D0.

Finally, from (A.5) we obtain

[D1,D3] = −{D0,D1} − n − 1

2
D0 +

(n − 1)(n − 2)

2
D0 = −{D0,D1} +

(n − 1)(n − 3)

2
D0.

Calculations of [D1,D3] for algebras Diff(Pn(H)S) and Diff(Pn(C)S) are analogous, but
much longer.

Let us demonstrate calculations in the octonionic case by one example. Below indices
i, j vary from 0 to 7. Let D0, . . . , D9 be the generators of Diff(P2(Ca)S), g = f4, k0 =
spin(7),K0 = Spin(7). Then from (A.1) and proposition 5 we obtain

[D1,D3] = 1

2

∑
i,j

({{[eλ,i , eλ,j ], eλ,i}, fλ,j } + {eλ,j , {eλ,i , [eλ,i , , fλ,j ]}})

= 1

8

∑
i �=j

{{�C2,ēi ,ēj
, eλ,i}, fλ,j } − 1

4

∑
i

{eλ,i , {eλ,i , �}} − 1

4

∑
i �=j

{eλ,j , {eλ,i , e2λ,ei ēj
}}.
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Formulae (A.3), (60), (47) and proposition 5 imply

1

8

∑
i �=j

{{�C2,ēi ,ēj
, eλ,i}, fλ,j } = 1

8

∑
i,j

(2{eλ,i , fλ,j }�C2,ēi ,ēj
+ {[�C2,ēi ,ēj

, eλ,i], fλ,j }

+ ({[�C2,ēi ,ēj
, fλ,j ], eλ,i} + [eλ,i , [�C2,ēi ,ēj

, fλ,j ]])

≡
∑
i �=j

(
− 1

16
{ad Y2(�C2,ēi ,ēj

|Ca2 ēi ), fλ,j } +
1

16

{
ad Y1

(
�C2,ēi ,ēj

|Ca1ej

)
, eλ,i

}

+
1

16

[
eλ,i , ad Y1

(
�C2,ēi ,ēj

|Ca1ej

)]
+

1

2
{eλ,i , fλ,j }f2λ,ei ēj

)
mod(U(g)k0)

K0

=
∑
i �=j

(
−1

4
{ad Y2(ēj ), fλ,j } − 1

8
{ad Y1(ei), eλ,i} − 1

8
[eλ,i , ad Y1(ei)]

+
1

4
({f2λ,ei ēj

, {eλ,i , fλ,j }} − [f2λ,ei ēj
, {eλ,i , fλ,j }])

)

=
∑
i �=j

(
1

2
{eλ,j , fλ,j } − 1

4
{fλ,i , eλ,i} − 1

4
[eλ,i , fλ,i]

)
+ D8

− 1

4

∑
i �=j

({[f2λ,ei ēj
, eλ,i], fλ,j } + {eλ,i , [f2λ,ei ēj

, fλ,j ]})

= D8 +
∑
i �=j

(
1

4
{eλ,j , fλ,j } +

1

8
� +

1

8
{eλ,ei ēj ·ei

, fλ,j } − 1

8
{eλ,i , fλ,ei ēj ·ej

}
)

= D8 +
∑
i �=j

(
1

4
{eλ,j , fλ,j } − 1

8
{eλ,ej ēi ei

, fλ,j } − 1

8
{eλ,i , fλ,i}

)
+ 7� = D8 + 7D0.

Similarly, from (A.2) and proposition 5 we get

−1

4

∑
i

{{�, eλ,i}, eλ,i} = −1

4

∑
i

({�, {eλ,i , eλ,i}} + [eλ,i , [�, eλ,i]])

= −1

2

{
�,

∑
i

e2
λ,i

}
+

1

8

∑
i

[eλ,i , fλ,i] = −1

2
{D0,D1} − 1

2
D0.

Also

−1

4

∑
i �=j

{{e2λ,ei ēj
, eλ,i}, eλ,j } = −1

4

∑
i �=j

({e2λ,ei ēj
, {eλ,i , eλ,j }} + [eλ,i , [e2λ,ei ēj

, eλ,j ]])

= −1

8

∑
i �=j

[eλ,i , fλ,ei ēj ·ej
] = −1

8

∑
i �=j

[eλ,i , fλ,i] = 7 × 8

2 × 8
� = 7

2
D0

since e2λ,ei ēj
is antisymmetric and {eλ,i , eλ,j } is symmetric w.r.t. i, j .

Thus

[D1,D3] = D8 +
(
7 − 1

2 + 7
2

)
D0 − 1

2 {D0,D1} = D8 − 1
2 {D0,D1} + 10D0.

Appendix B.

In this appendix we will prove the following theorem:
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Theorem 3. Let M be a two-point G-homogeneous Riemannian space, where G is the identity
component of the isometry group for M. For every smooth vector field v on M define a function
fv on MS by the following formula:

fv(y) = ĝ(v(x), ξ) ≡ 〈v(x), ξ 〉
where x ∈ M, ĝ(·, ·) ≡ 〈· , ·〉 is the Riemannian metric on M, ξ ∈ TxM, 〈ξ, ξ 〉 = 1, y =
(x, ξ) ∈ MS. Let D0 ∈ Diff(MS) be the differential operator constructed in section 4 (for the
noncompact case, see remark 1). For every element X ∈ g we denote by X̃ the corresponding
Killing vector field on M. Then the condition D0fv ≡ 0 on MS is equivalent to the equality
v = X̃ for some X ∈ g. In other words, the kernel of the operator D0 consists of functions
fX̃, where X runs over the algebra g.

This theorem for the case M = Hn(R) was formulated and proved in [4] by the explicit
coordinate calculations. Here we will prove it in the general case in a more conceptual way.

Proof. Let K be the stationary subgroup corresponding to the point x0 ∈ M, e0 = 1
R
�̃(x0) ∈

Tx0M, 〈e0, e0〉 = 1, where � and R are from proposition 1. The space MS is the G-orbit Gy0,
where y0 = (x0, e0) ∈ MS.

The action of D0 on fv can be written in the following way [3] (theorem 4.3):

(D0fv)(gy0) = d

dt

∣∣∣∣
t=0

fv(g exp(t�)y0) g ∈ G.

Therefore,

(D0fv)(gy0) = d

dt

∣∣∣∣
t=0

〈v(g exp(t�)x0), g exp(t�)e0〉

= d

dt

∣∣∣∣
t=0

〈
v(g exp(t�)g−1gx0), g exp(t�)

d

dµ

∣∣∣∣
µ=0

exp(µ�)x0

〉

= d

dt

∣∣∣∣
t=0

〈
v(exp(tAdg�)gx0),

d

dµ

∣∣∣∣
µ=0

exp(tAdg�) exp(µAdg�)gx0

〉

= d

dt

∣∣∣∣
t=0

〈
v(exp(tAdg�)gx0),

d

dµ

∣∣∣∣
µ=0

exp(µAdg�) exp(tAdg�)gx0

〉
.

Due to the transitivity of G-action on MS the point y := (x, e) := (
gx0, Ãdg�|gx0

)
can be

considered as arbitrary. Denote W = Adg�. Then

(D0fv)(y) = d

dt

∣∣∣∣
t=0

〈v(exp(tW)x), W̃ (exp(tW)x)〉 = £W̃ ĝ(v(x), W̃ (x))

where £X is the Lie derivative along the vector field X. The vector field W̃ is Killing, so
£W̃ ĝ = 0 and

D0fv = ĝ(£W̃ v, W̃ ) + ĝ(v, £W̃ W̃ ) = ĝ(£W̃ v, W̃ ) = −ĝ(£vW̃ , W̃ )

= 1
2 (£vĝ)(W̃ , W̃ ) − 1

2 £v(ĝ(W̃ , W̃ )) = 1
2 (£vĝ)(W̃ , W̃ ) (B.1)

due to ĝ(W̃ (x), W̃ (x)) = ĝ(g�̃(x0), g�̃(x0)) = ĝ(�̃(x0), �̃(x0)) = R2 and £XY = [X, Y ]c
where [X, Y ]c is the commutator of vector fields X and Y. The element W̃ ∈ TxM is arbitrary,
therefore from (B.1) we see that the condition D0fv = 0 is equivalent to the equality £vĝ = 0,
which means that v is a Killing vector field and has the form v = X̃ for some X ∈ g if and
only if D0fv ≡ 0. �
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